2022 Volume 12 Issue 2
Article Contents

Emadidin Gahalla Mohmed Elmahdi, Jianfei Huang. EFFICIENT NUMERICAL SOLUTION OF TWO-DIMENSIONAL TIME-SPACE FRACTIONAL NONLINEAR DIFFUSION-WAVE EQUATIONS WITH INITIAL SINGULARITY[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 831-849. doi: 10.11948/20210444
Citation: Emadidin Gahalla Mohmed Elmahdi, Jianfei Huang. EFFICIENT NUMERICAL SOLUTION OF TWO-DIMENSIONAL TIME-SPACE FRACTIONAL NONLINEAR DIFFUSION-WAVE EQUATIONS WITH INITIAL SINGULARITY[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 831-849. doi: 10.11948/20210444

EFFICIENT NUMERICAL SOLUTION OF TWO-DIMENSIONAL TIME-SPACE FRACTIONAL NONLINEAR DIFFUSION-WAVE EQUATIONS WITH INITIAL SINGULARITY

  • Corresponding author: Email address: jfhuang@lsec.cc.ac.cn(J. Huang)
  • Fund Project: The authors were supported by Natural Science Foundation of Jiangsu Province of China (No. BK20201427) and by National Natural Science Foundation of China (Nos. 11701502 and 11871065)
  • In this paper, we present an efficient linearized alternating direction implicit (ADI) scheme for two-dimensional time-space fractional nonlinear diffusion-wave equations with initial singularity. First, the original problem is equivalently transformed into its partial integro-differential form. Then, for the time discretization, the Crank-Nicolson technique combined with the midpoint formula and the second order convolution quadrature formula are used. Meanwhile, the classical central difference formula and fractional central difference formula are adopted to approximate the second order derivative and the Riesz derivative in space, respectively. The unconditional stability and convergence of the proposed scheme are proved by the energy method. Numerical experiments support the theoretical results.

    MSC: 65M06, 65M12
  • 加载中
  • [1] A. H. Bhrawya, E. H. Doha, D. Baleanu and S. S. Ezz-Eldien, A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations, J. Comput. Phys., 2015, 293, 142-156. doi: 10.1016/j.jcp.2014.03.039

    CrossRef Google Scholar

    [2] H. Chen, S. Lü and W. Chen, A unified numerical scheme for the multi-term time fractional diffusion and diffusion-wave equations with variable coefficients, J. Comput. Appl. Math., 2018, 330, 380-397. doi: 10.1016/j.cam.2017.09.011

    CrossRef Google Scholar

    [3] A. Chen and C. Li, Numerical solution of fractional diffusion-wave equation, Numer. Func. Anal. Opt., 2016, 37(1), 19-39. doi: 10.1080/01630563.2015.1078815

    CrossRef Google Scholar

    [4] C. Celik and M. Duman, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 2012, 231, 1743–1750. doi: 10.1016/j.jcp.2011.11.008

    CrossRef Google Scholar

    [5] H. Chen, D. Xu and J. Zhou, A second-order accurate numerical method with graded meshes for an evolution equation with a weakly singular kernel, J. Comput. Appl. Math., 2019, 356, 152-163. doi: 10.1016/j.cam.2019.01.031

    CrossRef Google Scholar

    [6] A. Ebadian, H. R. Fazli and A. A. Khajehnasiri, Solution of nonlinear fractional diffusion-wave equation by traingular functions, SeMA. J., 2015, 72, 37-46. doi: 10.1007/s40324-015-0045-x

    CrossRef Google Scholar

    [7] E. G. M. Elmahdi and J. Huang, Two linearized finite difference schemes for time fractional nonlinear diffusion-wave equations with fourth order derivative, AIMS Mathematics, 2021, 6(6), 6356-6376. doi: 10.3934/math.2021373

    CrossRef Google Scholar

    [8] W. Fan, X. Jiang, F. Liu and V. Anh, The unstructured mesh finite element method for the two-dimensional multi-term time-space fractional diffusion-wave equation on an irregular convex domain, J. Sci. Comput., 2018, 77, 27-52. doi: 10.1007/s10915-018-0694-x

    CrossRef Google Scholar

    [9] X. Gu, T. Huang, C. Ji and B. Carpentieri, A.A. Alikhanov, Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation, J. Sci. Comput., 2017, 72, 957-985.

    Google Scholar

    [10] J. Huang, Y. Tang, L. Vázquez and J. Yang, Two finite difference schemes for time fractional diffusion-wave equation, Numer. Algor., 2013, 64, 707-720. doi: 10.1007/s11075-012-9689-0

    CrossRef Google Scholar

    [11] J. Huang, S. Arshad, Y. Jiao and Y. Tang, Convolution quadrature methods for time-space fractional nonlinear diffusion-wave equations, East Asian J. Appl. Math., 2019, 9, 538-557. doi: 10.4208/eajam.230718.131018

    CrossRef Google Scholar

    [12] J. Huang, D. Yang and L. O. Jay, Efficient methods for nonlinear time fractional diffusion-wave equations and their fast implementations, Numer. Algorithms, 2020, 85(2), 375-397. doi: 10.1007/s11075-019-00817-4

    CrossRef Google Scholar

    [13] J. Huang, J. Zhang, S. Arshad, Y. Jiao and Y. Tang, A superlinear convergence scheme for the multi-term and distribution-order fractional wave equation with initial singularity, Numer. Methods Partial Differential Eq., 2021, 37(4), 2833-2848. doi: 10.1002/num.22773

    CrossRef Google Scholar

    [14] J. Huang, J. Zhang, S. Arshad and Y. Tang, A numerical method for two-dimensional multi-term time-space fractional nonlinear diffusion-wave equations, Appl. Numer. Math., 2021, 159, 159-173. doi: 10.1016/j.apnum.2020.09.003

    CrossRef Google Scholar

    [15] C. Ji and Z. Sun, An unconditionally stable and high-order convergent difference scheme for Stokes' first problem for a heated generalized second grade fluid with fractional derivative, Numer. Math. Theor. Meth. Appl., 2017, 10, 597-613. doi: 10.4208/nmtma.2017.m1605

    CrossRef Google Scholar

    [16] R. J. Le Veque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, SIAM, Philadelphia, 2007.

    Google Scholar

    [17] C. Li, Z. Zhao and Y. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl., 2011, 62, 855-875. doi: 10.1016/j.camwa.2011.02.045

    CrossRef Google Scholar

    [18] C. Li and F. Zeng, Numerical Methods for Fractional Calculus, Chapman and Hall/CRC, New York, 2015.

    Google Scholar

    [19] H. Liao, D. Li and J. Zhang, Sharp error estimate of the nonuniform $L1$ formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 2018, 56, 1112-1133. doi: 10.1137/17M1131829

    CrossRef Google Scholar

    [20] L. Liu, L. Zheng, F. Liu and X. Zhang, Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo-Christov flux, Commun. Nonlinear Sci. Numer. Simul., 2016, 38, 45-58. doi: 10.1016/j.cnsns.2016.02.009

    CrossRef Google Scholar

    [21] Q. Liu, F. Zeng and C. Li, Finite difference method for time-space fractional Schrödinger equation, Int. J. Comput. Math., 2015, 92, 1439-1451. doi: 10.1080/00207160.2014.945440

    CrossRef Google Scholar

    [22] C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal., 1986, 17, 704-719. doi: 10.1137/0517050

    CrossRef Google Scholar

    [23] C. Lubich, Convolution quadrature and discretized operational calculus I, Numer. Math., 1988, 52, 129-145. doi: 10.1007/BF01398686

    CrossRef Google Scholar

    [24] Y. Luchko and F. Mainardi, Some properties of the fundamental solution to the signalling problem for the fractional diffusion-wave equation, Cent. Eur. J. Phys., 2013, 11, 666-675.

    Google Scholar

    [25] P. Lyu and S. Vong, A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin-Bona-Mahony equation, J. Sci. Comput., 2019, 80, 1607-1628. doi: 10.1007/s10915-019-00991-6

    CrossRef Google Scholar

    [26] F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 1996, 9, 23-28. doi: 10.1016/0893-9659(96)00089-4

    CrossRef Google Scholar

    [27] R. Metzler and T. F. Nonnenmacher, Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation, Chem. Phys., 2002, 284, 67-90. doi: 10.1016/S0301-0104(02)00537-2

    CrossRef Google Scholar

    [28] L. Qiao and D. Xu, Compact alternating direction implicit scheme for integro-differential equations of parabolic type, J. Sci. Comput., 2018, 76(1), 565-582. doi: 10.1007/s10915-017-0630-5

    CrossRef Google Scholar

    [29] M. Stynes, E. ÓRiordan and J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 2017, 55, 1057-1079. doi: 10.1137/16M1082329

    CrossRef Google Scholar

    [30] Z. Sun, The Method of Order Reduction and Its Application to the Numerical Solutions of Partial Differential Equations, Science Press, Beijing, 2009.

    Google Scholar

    [31] Z. Wang, S. W. Vong and S. Lei, Finite difference schemes for two-dimensional time-space fractional differential equations, Int. J. Comput. Math., 2016, 93(3), 578-595. doi: 10.1080/00207160.2015.1009902

    CrossRef Google Scholar

    [32] P. Wang and C. Huang, An energy conservative difference scheme for the nonlinear fractional Schröinger equations, J. Comput. Phys., 2015, 293, 238-251. doi: 10.1016/j.jcp.2014.03.037

    CrossRef Google Scholar

    [33] F. Zeng, Second-order stable finite difference schemes for the time-fractional diffusion-wave equation, J. Sci. Comput., 2015, 65(1), 411-430. doi: 10.1007/s10915-014-9966-2

    CrossRef Google Scholar

    [34] J. Zhang, T. Aleroev, Y. Fang and J. Huang, Numerical schemes for time-space fractional vibration equations, Adv. Appl. Math. Mech., 2020, 13, 806-826.

    Google Scholar

Figures(2)  /  Tables(5)

Article Metrics

Article views(2626) PDF downloads(536) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint