2022 Volume 12 Issue 2
Article Contents

Xiangshuo Liu, Lijun Zhang, Mingji Zhang. STUDIES ON PULL-IN INSTABILITY OF AN ELECTROSTATIC MEMS ACTUATOR: DYNAMICAL SYSTEM APPROACH[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 850-861. doi: 10.11948/20210479
Citation: Xiangshuo Liu, Lijun Zhang, Mingji Zhang. STUDIES ON PULL-IN INSTABILITY OF AN ELECTROSTATIC MEMS ACTUATOR: DYNAMICAL SYSTEM APPROACH[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 850-861. doi: 10.11948/20210479

STUDIES ON PULL-IN INSTABILITY OF AN ELECTROSTATIC MEMS ACTUATOR: DYNAMICAL SYSTEM APPROACH

  • Corresponding author: Email address: li-jun0608@163.com(L. Zhang) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (12172199, 11672270) and Simons Foundation USA (628308)
  • The pull-in instability of an electrostatic microstructures is a common undesirable phenomenon which implies the loss of reliability of micro-electromechanical systems. It is important to better understand its mechanism and then to reduce the occurrence of such phenomenon. Our work is devoted to analyzing the pull-in instability of a typical electrostatic micro-electro-mechanical-system actuators with edge effects. The pull-in phenomenon and the dynamic threshold are examined via dynamical system approach and the qualitative theory of differential equations. Nonlinear interplays between the voltage and the initial positions are characterized, from which critical voltage values are identified. Those critical voltages play crucial roles in our analysis. Effects from other system parameters are also examined numerically. It turns out that most of the parameters involved in the MEMS oscillator have corresponding threshold values, beyond which the pull-in instability occurs.

    MSC: 34C40, 34C60, 35B32, 70K42, 70K50
  • 加载中
  • [1] S. Ai and J. A. Pelesko, Dynamics of a canonical electrostatic MEMS/NEMS system, Journal of Dynamics and differential Equations, 2008, 20(3), 609-641. doi: 10.1007/s10884-007-9094-x

    CrossRef Google Scholar

    [2] N. Anjum and J. He, Nonlinear dynamic analysis of vibratory behavior of a graphene nano/microelectromechanical system, Mathematical Methods in the Applied Sciences, 2020, DOI: 10.1002/mma.6699.

    CrossRef Google Scholar

    [3] O. Akar, T. Akin and K. Najafi, A wireless batch sealed absolute capacitive pressure sensor, Sensors & Actuators A Physical, 2001, 95(1), 29-38.

    Google Scholar

    [4] D. Elata and H. Bamberger, On the dynamic pull-in of electrostatic actuators with multiple degrees of freedom and multiple voltage sources, Journal of Microelectromechanical Systems, 2006, 15(1), 131-140. doi: 10.1109/JMEMS.2005.864148

    CrossRef Google Scholar

    [5] M. Gomez, D. E. Moulton and D. Vella, Delayed pull-in transitions in overdamped MEMS devices, Journal of Micromechanics and Microengineering, 2018, 28, 015006. doi: 10.1088/1361-6439/aa9a70

    CrossRef Google Scholar

    [6] J. He, N. Qie, C. He, et al., Fast identification of the pull-in voltage of a nano/micro-electromechanical system, Journal of Low Frequency Noise, Vibration and Active Control, 2022, 0(0), 1-6.

    Google Scholar

    [7] L. Jang, W. Kan, M. Chen, et al., Parameter extraction from BVD electrical model of PZT actuator of micropumps using time-domain measurement technique, Microfluidics and Nanofluidics, 2009, 7, 559-568. doi: 10.1007/s10404-009-0416-7

    CrossRef Google Scholar

    [8] J. Li, Geometric Properties and Exact Travelling Wave Solutions for the Generalized Burger-Fisher Equation and the Sharma-Tasso-Olver Equation, Journal of Nonlinear Modeling and Analysis, 2019, 1(1), 1-10.

    Google Scholar

    [9] C. Liu and Y. Yan, Resonances and chaos of electrostatically actuated arch micro/nanoresonators with time delay velocity feedback, Chaos Solitons & Fractals, 2019, 131, 109512.

    Google Scholar

    [10] G. Michael, V. Dominic and M. Derek, Pull-in dynamics of overdamped microbeams, Journal of Micromechanics and Microengineering, 2018, 28, 115002. doi: 10.1088/1361-6439/aad72f

    CrossRef Google Scholar

    [11] C. T. C. Nguyen, L. P. B. Katehi and G. M. Rebeiz, Micromachined devices for wireless communications, Proceedings of the IEEE, 1998, 86, 1756-1768. doi: 10.1109/5.704281

    CrossRef Google Scholar

    [12] A. H. Nayfeh, M. I. Younis and E. M. Abdel-Rahman, Dynamic pull-in phenomenon in MEMS resonators, Nonlinear Dynamics, 2007, 48(1-2), 153-163. doi: 10.1007/s11071-006-9079-z

    CrossRef Google Scholar

    [13] Y. Nemirovsky and O. Bochobza-Degani, A Methodology and Model for the Pull-In Parameters of Electrostatic Actuators, Journal of Microelectromechanical Systems, 2001, 10(4), 601-614. doi: 10.1109/84.967384

    CrossRef Google Scholar

    [14] H. C. Nathanson, W. E. Newell, R. A. Wickstrom, et al., The resonant gate transistor, IEEE Transactions on Electron Devices, 1967, 14(3), 117-133. doi: 10.1109/T-ED.1967.15912

    CrossRef Google Scholar

    [15] G. H. Nielson and G. Barbastathis, Dynamic pull-in of parallel-plate and torsional electrostatic MEMS actuators, Journal of Microelectromechanical Systems, 2006, 15(4), 811-821. doi: 10.1109/JMEMS.2006.879121

    CrossRef Google Scholar

    [16] H. M. Ouakad, Nonlinear structural behavior of a size-dependent MEMS gyroscope assuming a non-trivial shaped proof mass, Microsystem Technologies, 2019, 26(6), 573-582.

    Google Scholar

    [17] H. B. Palmer, The Capacitance of a Parallel-Plate Capacitor by the Schwartz-Christoffel Transformation, American Institute of Electrical Engineers Transactions of Electrical Engineers, 1937, 56(3), 363-366. doi: 10.1109/T-AIEE.1937.5057547

    CrossRef Google Scholar

    [18] H. Shang, Pull-in instability of a typical electrostatic MEMS resonator and its control by delayed feedback, Nonlinear Dynamics, 2017, 90, 171-183. doi: 10.1007/s11071-017-3653-4

    CrossRef Google Scholar

    [19] S. Schonhardt, J. G. Korvink, J. Mohr, et al., Optimization of an electromagnetic comb drive actuator, Sensors & Actuators A Physical, 2009, 154(2), 212-217.

    Google Scholar

    [20] H. M. Sedighi, M. Changizian and A. Noghrehabadi, Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory, Latin American Journal of Solids and Structures, 2014, 11(5), 810-825. doi: 10.1590/S1679-78252014000500005

    CrossRef Google Scholar

    [21] H. A. C. Tilmans, R. Legtenberg, H. Schurer, et al., (Electro-) mechanical characteristics of electrostatically driven vacuum encapsulated polysilicon resonators, IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 1994, 41, 4-6.

    Google Scholar

    [22] F. Tajaddodianfar, M. Yazdi and H. N. Pishkenari, Nonlinear dynamics of MEMS/NEMS resonators: analytical solution by the homotopy analysis method, Microsystem Technologies, 2017, 03, 1-14.

    Google Scholar

    [23] D. Tian, Q. T. Ain and N. Anjum, Fractal N/MEMS: from pull-in instability to pull-in stability, Fractals, 2020, 29(2), 2150030.

    Google Scholar

    [24] M. I. Younis, MEMS linear and nonlinear statics and dynamics, Springer, New York, 2011.

    Google Scholar

    [25] L. Zhang, Y. Wang, C. M. Khalique, et al., Peakon and cuspon solutions of a generalized Camassa-Holm-Novikov equation, Journal of Applied Analysis and Computations, 2018, 8(6), 1938-1958. doi: 10.11948/2018.1938

    CrossRef Google Scholar

Figures(5)

Article Metrics

Article views(3109) PDF downloads(542) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint