Citation: | Jibin Li, Maoan Han. PLANAR INTEGRABLE NONLINEAR OSCILLATORS HAVING A STABLE LIMIT CYCLE[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 862-867. doi: 10.11948/20210504 |
In this short paper, by improving some conclusions given by [
[1] | R. Bellman, Perturbation Techniques in Mathematics, Physics and Engineering, Holt, Rinehart and Winston, New York, 1966. |
[2] | V. K. Chandrasekar, S. N. Pandey, M. Senthilvelan and M. Lakshmanan, A simple and unified approach to identify integrable nonlinear oscillators and systems, J. Math. Phys., 2006, 47, 023508. doi: 10.1063/1.2171520 |
[3] | D. L. Gonzalez and O. Piro, Chaos in a nonlinear driven oscillator with exact solution, Physical Review Letters, 1983, 50(12), 870-872. |
[4] | J. Li, Hilbert's 16th problem and Bifurcations of Planar Polynomial vector Fields, Int. J of Bifurcation and Chaos, 2003, 13(1), 47-106. doi: 10.1142/S0218127403006352 |
[5] | R. Smith, A Simple non-linear Oscillation, J. London Math. Soc., 1961, 36, 33-34. |
[6] | Y. Ye and Others, Theory of Limit Cycles, Trans. Math. Monogr., Amer. Math. Soc., Providence, 1986, 66. |