2022 Volume 12 Issue 4
Article Contents

Rong Wu, Jibin Li. MORE EARLY PEAKON MODEL THAN CAMASSA-HOLM EQUATION: BIFURCATIONS AND DYNAMICAL BEHAVIORS OF TRAVELING WAVE SOLUTIONS FOR KUPERSHMIDT'S COUPLED KDV SYSTEM[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1613-1623. doi: 10.11948/20210466
Citation: Rong Wu, Jibin Li. MORE EARLY PEAKON MODEL THAN CAMASSA-HOLM EQUATION: BIFURCATIONS AND DYNAMICAL BEHAVIORS OF TRAVELING WAVE SOLUTIONS FOR KUPERSHMIDT'S COUPLED KDV SYSTEM[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1613-1623. doi: 10.11948/20210466

MORE EARLY PEAKON MODEL THAN CAMASSA-HOLM EQUATION: BIFURCATIONS AND DYNAMICAL BEHAVIORS OF TRAVELING WAVE SOLUTIONS FOR KUPERSHMIDT'S COUPLED KDV SYSTEM

  • Corresponding author: Email: lijb@zjnu.cn.(J. Li)
  • Fund Project: This research was supported by the National Natural Science Foundation of China (No. 11871231)
  • This paper considers the traveling wave solutions of Kupershmidt's multicomponent Korteweg-de Vries system derived in 1985. Exploiting the bifurcation theory of planar dynamical systems, we analyze the dynamical behaviors and the bifurcations, and also give all the explicit parametric expressions of solutions when parameters vary. We find that Kupershmidt's model has peakon solutions. This implies that this model is the more early peakon one than Camassa-Holm equation.

    MSC: 34C23, 35Q51, 35Q53
  • 加载中
  • [1] A. Arai, Exactly solvable supersymmetric quantum mechanics, J. Math. Anal. Appl., 1991, 158(1), 63-79. doi: 10.1016/0022-247X(91)90267-4

    CrossRef Google Scholar

    [2] A. Arai, Exact solutions of multi-component nonlinear Schrödinger and Klein-Gordon equations in two-dimensional space-time, J. Phys. A: Math. Gen., 2001, 34(20), 4281-4288. doi: 10.1088/0305-4470/34/20/302

    CrossRef Google Scholar

    [3] P. F. Byrd and M. D. Fridman, Handbook of Elliptic Integrals for Engineers and Sciensists, Springer, Berlin, 1971.

    Google Scholar

    [4] R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 1993, 71(11), 1661-1664. doi: 10.1103/PhysRevLett.71.1661

    CrossRef Google Scholar

    [5] R. Camassa, D. D. Holm and J. M. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 1994, 31, 1-33. doi: 10.1016/S0065-2156(08)70254-0

    CrossRef Google Scholar

    [6] A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions, Theoret. and Math. Phys., 2002, 133(2), 1463-1474. doi: 10.1023/A:1021186408422

    CrossRef Google Scholar

    [7] S. Deng, B. Guo and T. Wang, Some traveling wave solitons of the Green-Naghdi system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2011, 21(2), 575-585. doi: 10.1142/S0218127411028623

    CrossRef Google Scholar

    [8] S. Deng, B. Guo and T. Wang, Travelling wave solutions of a generalized Camassa-Holm-Degasperis-Procesi equation, Sci. China Math., 2011, 54(3), 555-572. doi: 10.1007/s11425-010-4122-4

    CrossRef Google Scholar

    [9] B. Guo and S. Tan, Global smooth solution for a coupled nonlinear wave equations, Math. Methods Appl. Sci., 1991, 14(6), 419-425. doi: 10.1002/mma.1670140606

    CrossRef Google Scholar

    [10] M. Ito, Symmetries and conservation laws of a coupled nonlinear wave equation, Phys. Lett. A, 1982, 91(7), 335-338. doi: 10.1016/0375-9601(82)90426-1

    CrossRef Google Scholar

    [11] B. A. Kupershmidt, A coupled Korteweg-de Vries equation with dispersion, J. Phys A, 1985, 18(10), 571-573. doi: 10.1088/0305-4470/18/10/003

    CrossRef Google Scholar

    [12] J. Li, Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013.

    Google Scholar

    [13] J. Li and G. Chen, On a class of singular nonlinear traveling wave equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2007, 17(11), 4049-4065. doi: 10.1142/S0218127407019858

    CrossRef Google Scholar

    [14] J. Li and Z. Qiao, Peakon, pseudo-peakon, and cuspon solutions for two generalized Cammasa-Holm equations, J. Math. Phys., 2003, 54(12), 1-13, 123501, .

    Google Scholar

    [15] J. Li, W. Zhou and G. Chen, Understanding peakons, periodic peakons and compactons via a shallow water wave equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2016, 26(12), 1-27, 1650207.

    Google Scholar

    [16] L. Zhang and J. Li, Bifurcations of traveling wave solutions in a coupled non-linear wave equation, Chaos, Solitons and Fractals, 2003, 17(5), 941-950. doi: 10.1016/S0960-0779(02)00442-3

    CrossRef Google Scholar

Figures(5)

Article Metrics

Article views(1836) PDF downloads(215) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint