2022 Volume 12 Issue 4
Article Contents

Lijun Hong, Bin Wang, Xiaochun Hong. ABELIAN INTEGRALS FOR A KIND OF QUADRATIC REVERSIBLE CENTERS OF GENUS ONE (R7)[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1624-1635. doi: 10.11948/20210487
Citation: Lijun Hong, Bin Wang, Xiaochun Hong. ABELIAN INTEGRALS FOR A KIND OF QUADRATIC REVERSIBLE CENTERS OF GENUS ONE (R7)[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1624-1635. doi: 10.11948/20210487

ABELIAN INTEGRALS FOR A KIND OF QUADRATIC REVERSIBLE CENTERS OF GENUS ONE (R7)

  • Corresponding author: Email address: xchong@ynufe.edu.cn(X. Hong)
  • Fund Project: This work was supported by the National Natural Science Foundation of China (No. 11761075)
  • For the quadratic reversible centers of genus one $ (r7) $, its all periodic orbits are quartic curves. Using the method of Picard-Fuchs equation and Riccati equation, we study that the upper bound of the number of zeros for Abelian integrals of system $ (r7) $ under arbitrary polynomial perturbations of degree $ n $, and obtain that the upper bound of the number is $ 45n-72 $ when $ n\geq 2 $, $ 5 $ when $ n=1 $, and $ 0 $ when $ n=0 $, which depends linearly on $ n $.

    MSC: 34C07, 34C08, 37G15
  • 加载中
  • [1] V. I. Arnold, Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields, Functional Analysis and Its Applications, 1977, 11(2), 85-92. doi: 10.1007/BF01081886

    CrossRef Google Scholar

    [2] A. Atabaigi, The number of zeros of Abelian integrals for a perturbation of a hyper-elliptic Hamiltonian system with a nilpotent center and a cuspidal loop, Electron. J. Qual. Theo., 2017, 68, 12.

    Google Scholar

    [3] A. Braghtha, Darboux systems with a cusp point and pseudo-Abelian integrals, J. Differential Equations, 2020, 268(3), 901-909. doi: 10.1016/j.jde.2019.08.038

    CrossRef Google Scholar

    [4] C. Christopher and C. Li, Limit cycles of differential equations, Birkhäuser, Basel, 2007.

    Google Scholar

    [5] I. E. Colak, J. Llibre and C. Valls, On the bifurcation of limit cycles due to polynomial perturbations of Hamiltonian centers, Mediterr. J. Math., 2017, 14(2), 40(10 pages).

    Google Scholar

    [6] Y. Gao, L. Peng and C. Liu, Bifurcation of limit cycles from a class of piecewise smooth systems with two vertical straight lines of singularity, Internat. J. Bifur. Chaos, 2017, 27(10), 1750157(13 pages).

    Google Scholar

    [7] S. Gautier, L. Gavrilov and I. D. Iliev, Perturbations of quadratic centers of genus one, Discrete Contin. Dyn. Syst., 2009, 25(2), 511-535. doi: 10.3934/dcds.2009.25.511

    CrossRef Google Scholar

    [8] M. Han, Bifurcation theory of limit cycles, Science Press, Beijing, 2013.

    Google Scholar

    [9] L. Hong, X. Hong and J. Lu, A linear estimation to the number of zeros for Abelian integrals in a kind of quadratic reversible centers of genus one, J. Appl. Anal. Comput., 2020, 10(4), 1534-1544.

    Google Scholar

    [10] L. Hong, J. Lu and X. Hong, On the number of zeros of Abelian integrals for a class of quadratic reversible centers of genus one, Journal of Nonlinear Modeling and Analysis, 2020, 2(2), 161-171.

    Google Scholar

    [11] X. Hong, J. Lu and Y. Wang, Upper bounds for the associated number of zeros of Abelian integrals for two classes of quadratic reversible centers of genus one, J. Appl. Anal. Comput., 2018, 8(6), 1959-1970.

    Google Scholar

    [12] X. Hong, S. Xie and L. Chen, Estimating the number of zeros for Abelian integrals of quadratic reversible centers with orbits formed by higher-order curves, Internat. J. Bifur. Chaos, 2016, 26(2), 1650020(16 pages).

    Google Scholar

    [13] X. Hong, S. Xie and R. Ma, On the Abelian integrals of quadratic reversible centers with orbits formed by genus one curves of higher degree, J. Math. Anal. Appl., 2015, 429(2), 924-941. doi: 10.1016/j.jmaa.2015.03.068

    CrossRef Google Scholar

    [14] E. Horozov and I. D. Iliev, Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians, Nonlinearity, 1998, 11(6), 1521-1537. doi: 10.1088/0951-7715/11/6/006

    CrossRef Google Scholar

    [15] B. Huang and W. Niu, Limit cycles for two classes of planar polynomial differential systems with uniform isochronous centers, J. Appl. Anal. Comput., 2019, 9(3), 943-961.

    Google Scholar

    [16] J. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Internat. J. Bifur. Chaos, 2003, 13(1), 47-106. doi: 10.1142/S0218127403006352

    CrossRef Google Scholar

    [17] W. Li, Y. Zhao, C. Li and Z. Zhang, Abelian integrals for quadratic centres having almost all their orbits formed by quartics, Nonlinearity, 2002, 15(3), 863-885. doi: 10.1088/0951-7715/15/3/321

    CrossRef Google Scholar

    [18] C. Liu and D. Xiao, The smallest upper bound on the number of zeros of Abelian integrals, J. Differential Equations, 2020, 269(4), 3816-3852. doi: 10.1016/j.jde.2020.03.016

    CrossRef Google Scholar

    [19] D. Marín and J. Villadelprat, On the Chebyshev property of certain Abelian integrals near a polycycle, Qual. Theory Dyn. Syst., 2018, 17(1), 261-270. doi: 10.1007/s12346-017-0226-3

    CrossRef Google Scholar

    [20] P. Moghimi, R. Asheghi and R. Kazemi, An extended complete Chebyshev system of 3 Abelian integrals related to a non-algebraic Hamiltonian system, Comput. Methods Differ. Equ., 2018, 6(4), 438-447.

    Google Scholar

    [21] D. Novikov and S. Malev, Linear estimate for the number of zeros of Abelian integrals, Qual. Theory Dyn. Syst., 2017, 16(3), 689-696. doi: 10.1007/s12346-016-0213-0

    CrossRef Google Scholar

    [22] S. Rebollo-Perdomo and M. U. Santibáñez, Number of zeros of complete Abelian integrals for a primitive rational polynomial with non-trivial global monodromy, Bull Braz Math. Soc., New Series 51, 2020, 697-717.

    Google Scholar

    [23] S. Sui and B. Li, Bifurcation of limit cycles from the global center of a class of integrable non-Hamilton systems, J. Appl. Anal. Comput., 2018, 8(5), 1441-1451.

    Google Scholar

    [24] Y. Tian and M. Han, Hopf and homoclinic bifurcations for near-Hamiltonian systems, J. Differential Equations, 2017, 262(4), 3214-3234. doi: 10.1016/j.jde.2016.11.026

    CrossRef Google Scholar

    [25] J. Yang and L. Zhao, The perturbation of a class of hyper-elliptic Hamilton system with a double eight figure loop, Qual. Theory Dyn. Syst., 2017, 16(2), 317-360. doi: 10.1007/s12346-016-0194-z

    CrossRef Google Scholar

    [26] L. Zhao, M. Qi and C. Liu, The cyclicity of period annuli of a class of quintic Hamiltonian systems, J. Math. Anal. Appl., 2013, 403(2), 391-407. doi: 10.1016/j.jmaa.2013.02.016

    CrossRef Google Scholar

    [27] Y. Zhao and Y. Chen, The cyclicity of quadratic reversible systems with a center of genus one and non-Morsean point, Applied Mathematics and Computation, 2014, 231, 268-275. doi: 10.1016/j.amc.2014.01.006

    CrossRef Google Scholar

    [28] Y. Zhao, W. Li, C. Li and Z. Zhang, Linear estimate of the number of zeros of Abelian integrals for quadratic centers having almost all their orbits formed by cubics, Sci. China Ser. A, 2002, 45(8), 964-974. doi: 10.1007/BF02879979

    CrossRef Google Scholar

Figures(1)

Article Metrics

Article views(2251) PDF downloads(422) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint