2022 Volume 12 Issue 4
Article Contents

Zhaowen Zheng, Huixin Liu. INTERVAL-TYPE CRITERIA OF LIMIT-POINT CASE FOR CONFORMABLE FRACTIONAL STURM-LIOUVILLE OPERATORS[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1636-1649. doi: 10.11948/20210510
Citation: Zhaowen Zheng, Huixin Liu. INTERVAL-TYPE CRITERIA OF LIMIT-POINT CASE FOR CONFORMABLE FRACTIONAL STURM-LIOUVILLE OPERATORS[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1636-1649. doi: 10.11948/20210510

INTERVAL-TYPE CRITERIA OF LIMIT-POINT CASE FOR CONFORMABLE FRACTIONAL STURM-LIOUVILLE OPERATORS

  • Corresponding author: Email address: zhwzheng@126.com(Z. Zheng) 
  • Fund Project: This work was completed with the support of NSF of Shandong Province (No. ZR2019MA034)
  • In this paper, the classification of limit-point case and limit-circle case for the $ 2\alpha $-order conformable fractional Sturm-Liouville operator

    $ \ell_{\alpha}(y)=-T_{\alpha}\left(p T_{\alpha} y\right)+q y, x \in[a, \infty), a>0 $

    is considered. Two interval criteria of limit-point case in the frame of conformable fractional derivatives are obtained. Examples illustrating the main results are presented.

    MSC: 34B12, 47E0575
  • 加载中
  • [1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 2015, 279, 57-66. doi: 10.1016/j.cam.2014.10.016

    CrossRef Google Scholar

    [2] B. P. Allahverdiev and H. Tuna, Indices defect theory of singular Hahn-Sturm-Liouville operator, J. Appl. Anal. Comput., 2019, 9(5), 1719-1730.

    Google Scholar

    [3] D. Anderson and D. Ulness, Newly defined conformable fractional derivatives, Adv. Dyn. Syst. Appl., 2015, 10, 109-137.

    Google Scholar

    [4] D. Baleanu, F. Jarad and U. Ekin, Singular conformable fractional sequential differential equations with distributional potentials, Quaest. Math., 2018, 2018, 1-11.

    Google Scholar

    [5] J. Cai and Z. Zheng, Inverse spectral problems for discontinuous Sturm-Liouville problems of Atkinson type, Appl. Math. Comput., 2018, 327, 22-34.

    Google Scholar

    [6] M. Dehghan and A. B. Mingarelli, Fractional Sturm-Liouville eigenvalue problems, I. RACSAM 114, 2020, 46. https://doi.org/10.1007/s13398-019-00756-8. doi: 10.1007/s13398-019-00756-8

    CrossRef Google Scholar

    [7] M. Dehghan and A. B. Mingarelli, Fractional Sturm-Liouville eigenvalue problems, Ⅱ. arXiv: 1712.09894v1.

    Google Scholar

    [8] M. S. P. Eastham and M. L. Thompson, On the limit-point, limit-circle classification of second-order ordinary differential equations, Quart. J. Math., 1973, 24(1), 531-535. doi: 10.1093/qmath/24.1.531

    CrossRef Google Scholar

    [9] P. Hartman and A. Wintner, A criterion for the non-degeneracy of the wave equation, Amer. J. Math., 1949, 71(1), 206-213. doi: 10.2307/2372105

    CrossRef Google Scholar

    [10] R. S. Ismagilov, On the self-adjointness of the Sturm-Liouville operator(Russian), Uspehi Mat. Nauk., 1953, 18(5), 161-166.

    Google Scholar

    [11] M. Klimek and O. P. Agrawal, Fractional Sturm-Liouville problem, Comput. Math. Appl., 2013, 66(5), 795-812. doi: 10.1016/j.camwa.2012.12.011

    CrossRef Google Scholar

    [12] R. M. Kauffman, T. T. Read and A. Zettl, The deficiency index problem for powers of ordinary fifferential rxpressions, Lect. Notes. Math., 1977, 621(5), 383-383.

    Google Scholar

    [13] R. Khalil, M. A. Horani and A. Yousef, A new definition of fractional derivative, J. Comput. Appl. Math., 2014, 264(5), 65-70.

    Google Scholar

    [14] I. Knowles, Note on a limit-point criterion, Proc. Amer. Math. Soc., 1973, 41(1), 117-119. doi: 10.1090/S0002-9939-1973-0320425-6

    CrossRef Google Scholar

    [15] M. J. Lazo and D. F. M. Torres, Variational calculus with conformable fractional derivatives, IEEE-CAA J. Autom. Sin., 2017, 99, 1-13.

    Google Scholar

    [16] N. Levinson, Criteria for the limit-point case for second order linear differential operators, Pest, Mat. Fys., 1949, 74, 17-20.

    Google Scholar

    [17] A. S. Ozkan and B. Keskin, Spectral problems for Sturm-Liouville operator with boundary and jump conditions linearly dependent on the eigenparameter, Inverse Probl. in Sci. En., 2020, 20(6), 799-808.

    Google Scholar

    [18] T. Read, A limit-point criterion for expressions with oscillatory coefficients, Pacific J. Math., 1976, 66(1), 243-255. doi: 10.2140/pjm.1976.66.243

    CrossRef Google Scholar

    [19] T. Read, A limit-point criterion for expressions with intermittently positive coefficients, J. Lond. Math. Soc., 1977, 15(2), 271-276.

    Google Scholar

    [20] D. B. Sears and E. C. Titchmarsh, Some eigenfunction formulae, Quart. J. Math., 1950, 1(1), 165-175. doi: 10.1093/qmath/1.1.165

    CrossRef Google Scholar

    [21] H. Weyl, On ordinary differential equations with singularities and the associated expansions of arbitrary functions, Math. Ann., 1910, 68, 222-269. (German)

    Google Scholar

    [22] Z. Zheng, H. Liu, J. Cai and Y. Zhang, Criteria of limit-point-case for conformable fractional Sturm-Liouville operators, Math. Meth. Appl. Sci., 2020, 43(5), 2548-2557. doi: 10.1002/mma.6063

    CrossRef Google Scholar

Article Metrics

Article views(1999) PDF downloads(334) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint