Citation: | Jiajie Wang, Yanpeng Zheng, Zhaolin Jiang. NORM EQUALITIES AND INEQUALITIES FOR TRIDIAGONAL PERTURBED TOEPLITZ OPERATOR MATRICES[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 671-683. doi: 10.11948/20210489 |
Tridiagonal perturbed Toeplitz operator matrices is a class of important structured matrices. In this paper, we present several norm equalities and inequalities for this class of matrices. The special norms we consider include the usual operator norm and the Schatten $ p $-norms. Moreover, pinching type inequalities are also discussed for general weakly unitarily invariant norms. The proofs feature the special structure of tridiagonal perturbed Toeplitz operator matrices.
[1] | W. Bani-Domi, F. Kittaneh and M. Shatnawi, New norm equalities and inequalities for certain operator matrices, Math. Inequalities Appl., 2020, 23, 1041–1050. |
[2] | R. Bhatia and F. Kittaneh, Clarkson inequalities with several operators, Bull. London Math. Soc., 2004, 36, 820–832. doi: 10.1112/S0024609304003467 |
[3] | R. Bhatia and F. Kittaneh, Norm inequalities for partitioned operators and an application, Math. Ann., 1990, 287, 719–726. doi: 10.1007/BF01446925 |
[4] | R. Bhatia, W. Kahan and R. Li, Pinchings and norms of scaled triangular matrices, Linear Multilinear Algebra, 2002, 50, 15–21. doi: 10.1080/03081080290011674 |
[5] | R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997. |
[6] | S. Compernolle, L. Chibotaru and A. Coulemans, Eigenstates and transmission coefficients of finite-sized nanotubes, J. Chem. Phys., 2003, 119, 2854–2873. doi: 10.1063/1.1587691 |
[7] | W. B. Domi and F. Kittaneh, Norm equalities and inequalities for operator matrices, Linear Algebra Appl., 2008, 429, 57–67. doi: 10.1016/j.laa.2008.02.004 |
[8] | Y. Fu, X. Jiang, Z. Jiang and S. Jhang, Properties of a class of perturbed Toeplitz periodic tridiagonal matrices, Comp. Appl. Math., 2020, 39, 1–19. doi: 10.1007/s40314-019-0964-8 |
[9] | Y. Fu, X. Jiang, Z. Jiang and S. Jhang, Inverses and eigenpairs of tridiagonal Toeplitz matrix with opposite-bordered rows, J. of Appl. Anal. Comput., 2020, 10(4), 1599–1613. |
[10] | Y. Fu, X. Jiang, Z. Jiang and S. Jhang, Analytic determinants and inverses of Toeplitz and Hankel tridiagonal matrices with perturbed columns, Spec. Matrices, 2020, 8, 131–143. doi: 10.1515/spma-2020-0012 |
[11] | M. Gu, J. Li, H. Sun, et al., Spectral signatures of the surface anomalous Hall effect in magnetic axion insulators, Nat. Commun., 2021, 12, 3524. doi: 10.1038/s41467-021-23844-z |
[12] | I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monographs, vol. 18, American Mathematical Society, Providence, RI, 1969. |
[13] | O. Hirzallah and F. Kittaneh, Non-commutative Clarkson inequalities for n-tuples of operators, Integr. Equat. Oper. Th., 2008, 60, 369–379. doi: 10.1007/s00020-008-1565-x |
[14] | Z. Jiang, Y. Qiao and S. Wang, Norm equalities and inequalities for three circulant operator matrices, Acta Mathematica Sinica, English Series, 2017, 33(4), 571–590. doi: 10.1007/s10114-016-5607-z |
[15] | Z. Jiang and T. Xu, Norm estimates of ω-circulant operator matrices and isomorphic operators for ω-circulant algebra, Sci. China Math., 2016, 59(2), 351–366. doi: 10.1007/s11425-015-5051-z |
[16] | P. D. Kvam1, J. R. Busemeyer and T. J. Pleskac, Temporal oscillations in preference strength provide evidence for an open system model of constructed preference, Sci. Rep., 2021, 11, 8169. doi: 10.1038/s41598-021-87659-0 |
[17] | E. Kissin, On Clarkson-McCarthy inequalities for n-tuples of operators, Proc. Amer. Math. Soc., 2007, 135, 2483–2495. doi: 10.1090/S0002-9939-07-08710-2 |
[18] | T. Kostyrko, M. Bartkowiak and G. D. Mahan, Reflection by defects in a tight-binding model of nanotubes, Phys. Rev. B, 1999, 59, 3241–3249. |
[19] | L. Lakatos, L. Szeidl and M. Telek, Introduction to Queueing Systems with Telecommunication Applications, 2 Eds., Springer Publishing Company, Incorporated, 2019. |
[20] | L. Molinari, Transfer matrices and tridiagonal-block Hamiltonians with periodic and scattering boundary conditions, J. Phys. A, 1997, 30, 983–997. doi: 10.1088/0305-4470/30/3/021 |
[21] | G. Meurant, A review on the inverse of symmetric tridiagonal and block tridiagonal matrices, SIAM J. Matrix Anal. Appl., 1992, 13, 707–728. doi: 10.1137/0613045 |
[22] | L. G. Molinari, Determinants of block tridiagonal matrices, Linear Algebra Appl., 2008, 429, 2221–2226. doi: 10.1016/j.laa.2008.06.015 |
[23] | E. D. Nabben, Decay rates of the inverse of nonsymmetric tridiagonal and band matrices, SIAM J. Matrix Anal. Appl., 1999, 20, 820–837. doi: 10.1137/S0895479897317259 |
[24] | N. P. D. Sawaya, et al., Resource-efficient digital quantum simulation of d-level systems for photonic, vibrational, and spin-s Hamiltonians, NPJ Quantum. Inform., 2020, 6(1), 1–13. doi: 10.1038/s41534-019-0235-y |
[25] | N. S. Savage, Describing the movement of molecules in reduced-dimension models, Commun. Biol., 2021, 4, 689. doi: 10.1038/s42003-021-02200-3 |
[26] | N. M. Schnerb and D. R. Nelson, Winding numbers, complex currents and non-Hermitian localization, Phys. Rev. Lett., 1998, 80, 5172–5175. doi: 10.1103/PhysRevLett.80.5172 |
[27] | T. Sogabe, On a two-term recurrence for the determinant of a general matrix, Appl. Math. Comput., 2007, 187, 785–788. |
[28] | Y. Wei, Y. Zheng, Z. Jiang and S. Shon, The inverses and eigenpairs of tridiagonal Toeplitz matrices with perturbed rows, J. App. Math. Comput., 2022, 68(1), 623–636. doi: 10.1007/s12190-021-01532-x |
[29] | Y. Wei, X. Jiang, Z. Jiang, et al., On inverses and eigenpairs of periodic tridiagonal Toeplitz matrices with perturbed corners, Journal of Applied Analysis and Computation, 2020, 10(1), 178–191. |
[30] | Y. Wei, Y. Zheng, Z. Jiang, et al., A study of determinants and inverses for periodic tridiagonal Toeplitz matrices with perturbed corners involving Mersenne numbers, Mathematics, 2019, 7(10), 893. doi: 10.3390/math7100893 |
[31] | Y. Wei, X. Jiang, Z. Jiang, et al., Determinants and inverses of perturbed periodic tridiagonal Toeplitz matrices, Advances in Difference Equations, 2019, 2019(1), 410. doi: 10.1186/s13662-019-2335-6 |
[32] |
C. Yue, Y. Xu, Z. Song, et al., Symmetry-enforced chiral hinge states and surface quantum anomalous Hall effect in the magnetic axion insulator $Bi_{2-x}Sm_x Se_3$, Nat. Phys., 2019, 15, 577–581. doi: 10.1038/s41567-019-0457-0
CrossRef $Bi_{2-x}Sm_x Se_3$" target="_blank">Google Scholar |
[33] | H. Yamada, Electronic localization properties of a double strand of DNA: a simple model with long range correlated hopping disorder, Internat. J. Modern Phys. B, 2004, 18, 1697–1716. doi: 10.1142/S0217979204024884 |