Citation: | Changfeng Ma, Ting Wang. THE MODULUS-BASED MATRIX SPLITTING METHOD WITH INNER ITERATION FOR A CLASS OF NONLINEAR COMPLEMENTARITY PROBLEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 701-714. doi: 10.11948/20210515 |
In this paper, we propose a modulus-based matrix splitting iteration method with inner iteration for a class of nonlinear complementarity problems. Convergence conditions of the iteration method are analyzed carefully, which shows that the iteration sequence generated by this method converges to a solution of the NCP under certain conditions. Moreover, the convergence conditions of the proposed method are studied when the system matrix is symmetric positive definite or is an $ H_{+} $-matrix. Theoretical results are supported by the numerical experiments, which implies that the iteration method with inner iteration is more effective and feasible for solving certain nonlinear complementarity problems.
[1] | Z. Bai, On the monotone convergence of the projected iteration methods for linear complementarity problem, Numer. Math., J. Chin. Univer. (Eng. Ser.), 1996, 5, 228–233. |
[2] | Z. Bai, On the convergence of the multisplitting methods for the linear complementarity problem, SIAM. J. Matrix Anal. Appl., 1999, 21, 67–78. doi: 10.1137/S0895479897324032 |
[3] | Z. Bai and D. Evans, Matrix multisplitting methods with applications to linear complementarity problems: parallel asychronous methods, Int. J. Comput. Math., 2002, 79, 205–232. doi: 10.1080/00207160211927 |
[4] | Z. Bai and L. Zhang, Modulus-based synchronous multisplitting iteration methods for linear complementarity problems, Numer. Linear Algebra Appl., 2013, 20, 425–439. doi: 10.1002/nla.1835 |
[5] | Z. Bai, Modulus-based matrix splitting iteration methods for linear complemenarity problems, Numer. Linear Algebra Appl., 2010, 17, 917–933. doi: 10.1002/nla.680 |
[6] | Z. Bai, The monotone convergence of a class of parallel nonlinear relaxation methods for nonlinear complementarity problems, Comput. Math. Appl., 1996, 31, 17–33. |
[7] | Z. Bai, New comparison theorem for the nonlinear multisplitting relaxation methods for the large sparse nonlinear complementarity problems, Comput. Math. Appl., 1996, 32, 79–95. |
[8] | L. Badea, X. Tai and J. Wang, Convergence rate analysis of a multiplicative Schwarz method for variational inequalities, SIAM J. Numer. Anal., 2003, 41, 1052–1073. doi: 10.1137/S0036142901393607 |
[9] | R. W. Cottle, J. Pang and R. E. Stone, The Linear Complementarity Problem, Academic, San Diego, 1992. |
[10] | J. Dong and M. Jiang, A modified modulus method for symmetric positive-definite linear complementarity problems, Numer. Linear Algebra Appl., 2009, 16, 129–143. doi: 10.1002/nla.609 |
[11] | M. C. Ferris and J. Pang, Engineering and economic applications of complementarity problems, SIAM Review, 1997, 39, 669–713. doi: 10.1137/S0036144595285963 |
[12] | F. Facchinei and J. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer Science and Business Media, New York, 2003. |
[13] | N. Huang and C. Ma, The modulus-based matrix splitting algorithms for a class of weakly nonlinear complementerity problems, Numer. Linear Algebra Appl., 2016, 23, 558–569. doi: 10.1002/nla.2039 |
[14] | J. Hong and C. Li, Modulus-based matrix splitting iteration methods for a class of implicit complementarity problems, Numer. Linear Algebra Appl., 2016, 23(4), 629–641. doi: 10.1002/nla.2044 |
[15] | Y. Jiang and J. Zeng, A Multiplicative Schwarz algorithm for the nonlinear complementarity problem with an $M$-function, Bull. Aust. Soc., 2010, 82, 353–366. doi: 10.1017/S0004972710000389 |
[16] | C. Kanzow, Inexact semismooth Newton methods for large-scale complementarity problems, Optim. Methods Softw., 2004, 19, 309–325. doi: 10.1080/10556780310001636369 |
[17] | B. M. Kwak and J. Y. Kwak, Binary NCP: a new approach for solving nonlinear complementarity problems, J. Mech. Sci. Tech., 2021, 35(3), 1161–1166. doi: 10.1007/s12206-021-0229-5 |
[18] | W. La Cruz, A spectral algorithm for large-scale systems of nonlinear monotone equations, Numer. Algor., 2017, 76(4), 1109–1130. doi: 10.1007/s11075-017-0299-8 |
[19] | F. Mezzadri and E. Galligani, Modulus-based matrix splitting methods for a class of horizontal nonlinear complementarity problems, Numer. Algor., 2020, 87(2), 667–687. |
[20] | K. G. Murty, Linear Complementarity, Linear and Nonlinear Programming, Heldermann, Berlin, 1988. |
[21] | G. H. Meyer, Free boundary problems with nonlinear source terms, Numer. Math., 1984, 43, 463–483. doi: 10.1007/BF01390185 |
[22] | C. Ma, L. Chen and D. Wang, A globally and superlinearly convergent smoothing Broyden-like method for solving nonlinear complementarity prolem, Appl. Math. Comput., 2008, 198, 592–604. |
[23] | J. Pang, On the convergence of a basic iterative method for the implicit complementarity problems, J. Optim. Theory Appli., 1982, 37, 149–162. doi: 10.1007/BF00934765 |
[24] | Z. Xia and C. Li, Modulus-based matrix splitting iteration methods for a class of nonlinear complementerity problem, Appl. Math. Comput., 2015, 271, 34–42. |
[25] | S. Xie and H. Xu, Two-step modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems, Linear Algebra Appl., 2016, 494, 1–10. doi: 10.1016/j.laa.2016.01.002 |
[26] | S. Xie and H. Xu, An Efficient Class of Modulus-Based Matrix Splitting Methods for Nonlinear Complementarity Problems, Math. Prob. Engin., 2021, ID 9030547. |
[27] | N. Zheng and J. Yin, Convergence of accelerated modulus-based matrix splitting iteration methods for linear complementarity problem with an $H_{+}-matrix$, J. Comput. Appl. Math., 2014, 260, 281–293. doi: 10.1016/j.cam.2013.09.079 |
[28] | L. Zhang, Two-step modulus-based matrix splitting iteration methods for linear complementarity problems, Numer Algor., 2011, 57, 83–99. doi: 10.1007/s11075-010-9416-7 |
[29] | L. Zhang and Z. Ren, Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems, Appl. Math. Lett., 2013, 26, 638–642. doi: 10.1016/j.aml.2013.01.001 |
[30] | L. Zhang, Two-stage multispliting iteration methods using modulus-based matrix splitting as inner iteration for linear complementarity problems, J. Optim. Theory Appl., 2014, 160, 189–203. doi: 10.1007/s10957-013-0362-0 |
[31] | Y. Zhang, Multilevel projection algorithm for solving obstacle problems, Comput. Math. Appl., 2001, 41, 1505–1513. doi: 10.1016/S0898-1221(01)00115-8 |
[32] | X. Zhang and Z. Peng, A modulus-based nonmonotone line search method for nonlinear complementarity problems, Appl. Math. Comput., 2020, 387, 125175. |