2023 Volume 13 Issue 2
Article Contents

Ran Zhang, Shengqiang Liu. WAVE PROPAGATION FOR A DISCRETE DIFFUSIVE VACCINATION EPIDEMIC MODEL WITH BILINEAR INCIDENCE[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 715-733. doi: 10.11948/20220040
Citation: Ran Zhang, Shengqiang Liu. WAVE PROPAGATION FOR A DISCRETE DIFFUSIVE VACCINATION EPIDEMIC MODEL WITH BILINEAR INCIDENCE[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 715-733. doi: 10.11948/20220040

WAVE PROPAGATION FOR A DISCRETE DIFFUSIVE VACCINATION EPIDEMIC MODEL WITH BILINEAR INCIDENCE

  • Corresponding author: Email: sqliu@tiangong.edu.cn(S. Liu)
  • Fund Project: This research was supported by the National Natural Science Foundation of China (Nos.12271401, 12101309), the Natural Science Foundation of Tianjin, China (No.22JCYBJC00080), the Fundamental Research Funds for the Colleges and Universities in Heilongjiang Province (No.2022-KYYWF-1113) and the Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex Systems
  • The aim of the current paper is to study the existence of traveling wave solutions for a vaccination epidemic model with bilinear incidence. The existence result is determined by the basic reproduction number $ \Re_0 $. More specifically, the system admits nontrivial traveling wave solutions when $ \Re_0>1 $ and $ c \geq c^* $, where $ c^* $ is the critical wave speed. We also found that the traveling wave solution is connecting two different equilibria by constructing Lyapunov functional. Lastly, we give some biological explanations from the perspective of epidemiology.

    MSC: 92D30, 35C07, 35K57
  • 加载中
  • [1] X. Chen and J. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann., 2003, 326, 123–146. doi: 10.1007/s00208-003-0414-0

    CrossRef Google Scholar

    [2] Y. Chen, J. Guo and F. Hamel, Traveling waves for a lattice dynamical system arising in a diffusive endemic model, Nonlinearity, 2017, 30, 2334–2359. doi: 10.1088/1361-6544/aa6b0a

    CrossRef Google Scholar

    [3] X. Duan, S. Yuan and X. Li, Global stability of an SVIR model with age of vaccination, Appl. Math. Comput., 2014, 226, 528–540.

    Google Scholar

    [4] A. Ducrot and P. Magal, Travelling wave solutions for an infection-age structured epidemic model with external supplies, Nonlinearity, 2011, 24, 2891–2911. doi: 10.1088/0951-7715/24/10/012

    CrossRef Google Scholar

    [5] S. Fu, J. Guo and C. Wu, Traveling wave solutions for a discrete diffusive epidemic model, J. Nonlinear Convex Anal., 2016, 17, 1739–1751.

    Google Scholar

    [6] Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Models Meth. Appl. Sci., 1995, 5, 935–966. doi: 10.1142/S0218202595000504

    CrossRef Google Scholar

    [7] H. Huo, K. Cao and H. Xiang, Modelling the effects of the vaccination on seasonal influenza in Gansu, China, J. Appl. Anal. Comput., 2022, 12, 407–435.

    Google Scholar

    [8] T. Kuniya, Global stability of a multi-group SVIR epidemic model, Nonlinear Anal. Real World Appl., 2013, 14, 1135–1143. doi: 10.1016/j.nonrwa.2012.09.004

    CrossRef Google Scholar

    [9] Y. Li, W. Li and G. Lin, Traveling waves of a delayed diffusive SIR epidemic model, Commun. Pure Appl. Anal., 2015, 14, 1001–1022. doi: 10.3934/cpaa.2015.14.1001

    CrossRef Google Scholar

    [10] Y. Li, W. Li and F. Yang, Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, Appl. Math. Comput., 2014, 247, 723–740.

    Google Scholar

    [11] X. Liu, Y. Takeuchi and S. Iwami, SVIR epidemic models with vaccination strategies, J. Theoret. Biol., 2008, 253, 1–11. doi: 10.1016/j.jtbi.2007.10.014

    CrossRef Google Scholar

    [12] X. San and Y. He, Traveling waves for a two-group epidemic model with latent period and bilinear incidence in a patchy environment, Commun. Pur. Appl. Anal., 2021, 20, 3281–3300.

    Google Scholar

    [13] C. Wang, J. Wang and R. Zhang, Global analysis on an age-space structured vaccination model with Neumann boundary condition, Math. Meth. Appl. Sci., 2022, 45, 1640–1667. doi: 10.1002/mma.7879

    CrossRef Google Scholar

    [14] J. Wang, M. Guo and S. Liu, SVIR epidemic model with age structure in susceptibility, vaccination effects and relapse, IMA J. Appl. Math., 2018, 82, 945–970.

    Google Scholar

    [15] J. Wang, R. Zhang and T. Kuniya, The dynamics of an SVIR epidemiological model with infection age, IMA J. Appl. Math., 2016, 81, 321–343. doi: 10.1093/imamat/hxv039

    CrossRef Google Scholar

    [16] J. Wang, R. Zhang and T. Kuniya, A reaction-diffusion Susceptible-Vaccinated-Infected-Recovered model in a spatially heterogeneous environment with Dirichlet boundary condition, Math. Comput. Simulat., 2021, 190, 848–865. doi: 10.1016/j.matcom.2021.06.020

    CrossRef Google Scholar

    [17] K. Wang, H. Zhao and H. Wang, Traveling waves for a diffusive mosquito-borne epidemic model with general incidence, Z. Angew. Math. Phys., 2022, 31, 73.

    Google Scholar

    [18] K. Wang, H. Zhao, H. Wang and R. Zhang, Traveling wave of a reaction–diffusion vector-borne disease model with nonlocal effects and distributed delay, J. Dyn. Differ. Equ., In Press, DOI: 10.1007/s10884-021-10062-w.

    Google Scholar

    [19] W. Wang and W. Ma, Travelling wave solutions for a nonlocal dispersal HIV infection dynamical model, J. Math. Anal. Appl., 2017, 457, 868–889.

    Google Scholar

    [20] Z. Wang and R. Xu, Stability and traveling waves of an epidemic model with relapse and spatial diffusion, J. Appl. Anal. Comput., 2014, 4, 307–322.

    Google Scholar

    [21] W. Xu, W. Li and G. Lin, Nonlocal dispersal cooperative systems: Acceleration propagation among species, J. Differ. Equations, 2020, 268, 1081–1105. doi: 10.1016/j.jde.2019.08.039

    CrossRef Google Scholar

    [22] Z. Xu, Y. Xu and Y. Huang, Stability and traveling waves of a vaccination model with nonlinear incidence, Comput. Math. Appl., 2018, 75, 561–581. doi: 10.1016/j.camwa.2017.09.042

    CrossRef Google Scholar

    [23] Q. Zhang and S. Wu, Wave propagation of a discrete SIR epidemic model with a saturated incidence rate, Int. J. Biomath., 2019, 12, 1950029. doi: 10.1142/S1793524519500293

    CrossRef Google Scholar

    [24] R. Zhang and S. Liu, Traveling waves for SVIR epidemic model with nonlocal dispersal, Math. Biosci. Eng., 2019, 16, 1654–1682. doi: 10.3934/mbe.2019079

    CrossRef Google Scholar

    [25] R. Zhang, L. Liu, X. Feng and Z. Jin, Existence of traveling wave solutions for a diffusive tuberculosis model with fast and slow progression, Appl. Math. Lett., 2021, 112, 106848. doi: 10.1016/j.aml.2020.106848

    CrossRef Google Scholar

    [26] R. Zhang, J. Wang and S. Liu, Traveling wave solutions for a class of discrete diffusive SIR epidemic model, J. Nonlinear Sci., 2021, 31, 10. doi: 10.1007/s00332-020-09656-3

    CrossRef Google Scholar

    [27] R. Zhang and X. Yu, Traveling waves for a four-compartment lattice epidemic system with exposed class and standard incidence, Math. Meth. Appl. Sci., 2022, 45, 113–136. doi: 10.1002/mma.7765

    CrossRef Google Scholar

    [28] R. Zhang and H. Zhao, Traveling wave solutions for Zika transmission model with nonlocal diffusion, J. Math. Anal. Appl., 2022, 513, 126201. doi: 10.1016/j.jmaa.2022.126201

    CrossRef Google Scholar

    [29] J. Zhou, L. Song and J. Wei, Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay, J. Differ. Equations, 2020, 268, 4491–4524. doi: 10.1016/j.jde.2019.10.034

    CrossRef Google Scholar

    [30] J. Zhou, Y. Yang and C. H. Hsu, Traveling waves for a nonlocal dispersal vaccination model with general incidence, Discret. Contin. Dyn. Syst. Ser. B, 2020, 25, 1469–1495.

    Google Scholar

Tables(1)

Article Metrics

Article views(2172) PDF downloads(324) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint