Citation: | Ran Zhang, Shengqiang Liu. WAVE PROPAGATION FOR A DISCRETE DIFFUSIVE VACCINATION EPIDEMIC MODEL WITH BILINEAR INCIDENCE[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 715-733. doi: 10.11948/20220040 |
The aim of the current paper is to study the existence of traveling wave solutions for a vaccination epidemic model with bilinear incidence. The existence result is determined by the basic reproduction number $ \Re_0 $. More specifically, the system admits nontrivial traveling wave solutions when $ \Re_0>1 $ and $ c \geq c^* $, where $ c^* $ is the critical wave speed. We also found that the traveling wave solution is connecting two different equilibria by constructing Lyapunov functional. Lastly, we give some biological explanations from the perspective of epidemiology.
[1] | X. Chen and J. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann., 2003, 326, 123–146. doi: 10.1007/s00208-003-0414-0 |
[2] | Y. Chen, J. Guo and F. Hamel, Traveling waves for a lattice dynamical system arising in a diffusive endemic model, Nonlinearity, 2017, 30, 2334–2359. doi: 10.1088/1361-6544/aa6b0a |
[3] | X. Duan, S. Yuan and X. Li, Global stability of an SVIR model with age of vaccination, Appl. Math. Comput., 2014, 226, 528–540. |
[4] | A. Ducrot and P. Magal, Travelling wave solutions for an infection-age structured epidemic model with external supplies, Nonlinearity, 2011, 24, 2891–2911. doi: 10.1088/0951-7715/24/10/012 |
[5] | S. Fu, J. Guo and C. Wu, Traveling wave solutions for a discrete diffusive epidemic model, J. Nonlinear Convex Anal., 2016, 17, 1739–1751. |
[6] | Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Models Meth. Appl. Sci., 1995, 5, 935–966. doi: 10.1142/S0218202595000504 |
[7] | H. Huo, K. Cao and H. Xiang, Modelling the effects of the vaccination on seasonal influenza in Gansu, China, J. Appl. Anal. Comput., 2022, 12, 407–435. |
[8] | T. Kuniya, Global stability of a multi-group SVIR epidemic model, Nonlinear Anal. Real World Appl., 2013, 14, 1135–1143. doi: 10.1016/j.nonrwa.2012.09.004 |
[9] | Y. Li, W. Li and G. Lin, Traveling waves of a delayed diffusive SIR epidemic model, Commun. Pure Appl. Anal., 2015, 14, 1001–1022. doi: 10.3934/cpaa.2015.14.1001 |
[10] | Y. Li, W. Li and F. Yang, Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, Appl. Math. Comput., 2014, 247, 723–740. |
[11] | X. Liu, Y. Takeuchi and S. Iwami, SVIR epidemic models with vaccination strategies, J. Theoret. Biol., 2008, 253, 1–11. doi: 10.1016/j.jtbi.2007.10.014 |
[12] | X. San and Y. He, Traveling waves for a two-group epidemic model with latent period and bilinear incidence in a patchy environment, Commun. Pur. Appl. Anal., 2021, 20, 3281–3300. |
[13] | C. Wang, J. Wang and R. Zhang, Global analysis on an age-space structured vaccination model with Neumann boundary condition, Math. Meth. Appl. Sci., 2022, 45, 1640–1667. doi: 10.1002/mma.7879 |
[14] | J. Wang, M. Guo and S. Liu, SVIR epidemic model with age structure in susceptibility, vaccination effects and relapse, IMA J. Appl. Math., 2018, 82, 945–970. |
[15] | J. Wang, R. Zhang and T. Kuniya, The dynamics of an SVIR epidemiological model with infection age, IMA J. Appl. Math., 2016, 81, 321–343. doi: 10.1093/imamat/hxv039 |
[16] | J. Wang, R. Zhang and T. Kuniya, A reaction-diffusion Susceptible-Vaccinated-Infected-Recovered model in a spatially heterogeneous environment with Dirichlet boundary condition, Math. Comput. Simulat., 2021, 190, 848–865. doi: 10.1016/j.matcom.2021.06.020 |
[17] | K. Wang, H. Zhao and H. Wang, Traveling waves for a diffusive mosquito-borne epidemic model with general incidence, Z. Angew. Math. Phys., 2022, 31, 73. |
[18] |
K. Wang, H. Zhao, H. Wang and R. Zhang, Traveling wave of a reaction–diffusion vector-borne disease model with nonlocal effects and distributed delay, J. Dyn. Differ. Equ., In Press, DOI: |
[19] | W. Wang and W. Ma, Travelling wave solutions for a nonlocal dispersal HIV infection dynamical model, J. Math. Anal. Appl., 2017, 457, 868–889. |
[20] | Z. Wang and R. Xu, Stability and traveling waves of an epidemic model with relapse and spatial diffusion, J. Appl. Anal. Comput., 2014, 4, 307–322. |
[21] | W. Xu, W. Li and G. Lin, Nonlocal dispersal cooperative systems: Acceleration propagation among species, J. Differ. Equations, 2020, 268, 1081–1105. doi: 10.1016/j.jde.2019.08.039 |
[22] | Z. Xu, Y. Xu and Y. Huang, Stability and traveling waves of a vaccination model with nonlinear incidence, Comput. Math. Appl., 2018, 75, 561–581. doi: 10.1016/j.camwa.2017.09.042 |
[23] | Q. Zhang and S. Wu, Wave propagation of a discrete SIR epidemic model with a saturated incidence rate, Int. J. Biomath., 2019, 12, 1950029. doi: 10.1142/S1793524519500293 |
[24] | R. Zhang and S. Liu, Traveling waves for SVIR epidemic model with nonlocal dispersal, Math. Biosci. Eng., 2019, 16, 1654–1682. doi: 10.3934/mbe.2019079 |
[25] | R. Zhang, L. Liu, X. Feng and Z. Jin, Existence of traveling wave solutions for a diffusive tuberculosis model with fast and slow progression, Appl. Math. Lett., 2021, 112, 106848. doi: 10.1016/j.aml.2020.106848 |
[26] | R. Zhang, J. Wang and S. Liu, Traveling wave solutions for a class of discrete diffusive SIR epidemic model, J. Nonlinear Sci., 2021, 31, 10. doi: 10.1007/s00332-020-09656-3 |
[27] | R. Zhang and X. Yu, Traveling waves for a four-compartment lattice epidemic system with exposed class and standard incidence, Math. Meth. Appl. Sci., 2022, 45, 113–136. doi: 10.1002/mma.7765 |
[28] | R. Zhang and H. Zhao, Traveling wave solutions for Zika transmission model with nonlocal diffusion, J. Math. Anal. Appl., 2022, 513, 126201. doi: 10.1016/j.jmaa.2022.126201 |
[29] | J. Zhou, L. Song and J. Wei, Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay, J. Differ. Equations, 2020, 268, 4491–4524. doi: 10.1016/j.jde.2019.10.034 |
[30] | J. Zhou, Y. Yang and C. H. Hsu, Traveling waves for a nonlocal dispersal vaccination model with general incidence, Discret. Contin. Dyn. Syst. Ser. B, 2020, 25, 1469–1495. |