Citation: | Xin Wu, Taixiang Sun. NEW OSCILLATION CRITERIA FOR A CLASS OF HIGHER-ORDER NEUTRAL FUNCTIONAL DYNAMIC EQUATIONS ON TIME SCALES[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 734-757. doi: 10.11948/20220051 |
In this paper, we study the higher-order neutral functional dynamic equations of the form
$ \begin{equation*} L_ny(t)+q(t)f(|y(\theta(t))|^{\beta}sgn(y(\theta(t))))=0,\ \ t\in[t_0,\infty)_{\mathbb{T}}, \end{equation*} $
on an arbitrary time scale
$ \begin{equation*} L_1y(t)=[y(t)+r(t)y(\tau(t))]^{\Delta},\ L_{i+1}y(t)=[p_i(t)|L_iy(t)|^{\alpha_i}sgn(L_iy(t))]^{\Delta}, \end{equation*} $
[1] | R. P. Agarwal, M. Bohner, T. Li and C. Zhang, Oscillation criteria for second-order dynamic equations on time scales, Appl. Math. Lett., 2014, 31, 34-40. doi: 10.1016/j.aml.2014.01.002 |
[2] | R. P. Agarwal, S. R. Grace, D. O'Regan and A. Zafer, Oscillatory and asymptotic behavior of solutions for second-order nonlinear integro-dynamic equations on time scales, Electron. J. Differential Equations, 2014, 105, 1-14. |
[3] | B. Baculikova, Oscillatory behavior of the second order general noncanonical differential equations, Appl. Math. Lett., 2020, 104, 1-5. |
[4] | M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001. |
[5] | X. Deng, Q. Wang and Z. Zhou, Generalized Philos-type oscillation criteria for second order nonlinear neutral delay dynamic equations on time scales, Appl. Math. Lett., 2016, 57, 69-76. doi: 10.1016/j.aml.2016.01.006 |
[6] | L. H. Erbe, A. C. Peterson and S. H. Saker, Hille and Nehari type criteria for third-order dynamic equations, J. Math. Anal. Appl., 2007, 329, 112-131. doi: 10.1016/j.jmaa.2006.06.033 |
[7] | L. H. Erbe, B. Karpuz and A. C. Peterson, Kamenev-type oscillation criteria for higher-order neutral delay dynamic equations, Int. J. Difference Equ., 2011, 6, 1-16. |
[8] | M. Federson, R. Grau, J. G. Mesquita and E. Toon, Lyapunov stability for measure differential equations and dynamic equations on time scales, J. Differential Equations, 2019, 267, 4192-4233. doi: 10.1016/j.jde.2019.04.035 |
[9] | T. S. Hassan, Oscillation criteria for half-linear dynamic equations on time scales, J. Math. Anal. Appl., 2008, 345, 176-185. doi: 10.1016/j.jmaa.2008.04.019 |
[10] | T. S. Hassan, Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales, Appl. Math. Comput., 2011, 217, 5285-5297. |
[11] | T. S. Hassan and D. O'Regan, Oscillatory behavior of solutions of dynamic equations of higher order on time scales, Rocky Mountain J. Math., 2020, 50, 599-617. |
[12] | S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., 1990, 18, 18-56. doi: 10.1007/BF03323153 |
[13] | J. Jaros, An integral oscillation criterion for even order half-linear differential equations, Appl. Math. Lett., 2020, 104, 106257. doi: 10.1016/j.aml.2020.106257 |
[14] | B. Karpuz, Asymptotic behaviour of bounded solutions of a class of higher-order neutral dynamic equations, Appl. Math. Comput., 2009, 215, 2174-2183. |
[15] | B. Karpuz, Unbounded oscillation of higher-order nonlinear delay dynamic equations of neutral type with oscillating coefficients, Electron. J. Qual. Theory Differ. Equ., 2009, 34, 1-14. |
[16] | B. Karpuz, Sufficient conditions for the oscillation and asymptotic behaviour of higher-order dynamic equations of neutral type, Appl. Math. Comput., 2013, 221, 453-462. |
[17] | B. Karpuz, Comparison tests for the asymptotic behaviour of higher-order dynamic equations of neutral type, Forum Math., 2015, 27, 2759-2773. |
[18] | S. S. Negi, S. Abbas, M. Malik and S. R. Grace, New oscillation criteria for p-Laplacian dynamic equations on time scales, Rocky Mountain J. Math., 2020, 50, 659-670. |
[19] | D. O'Regan and T. S. Hassan, Oscillation criteria for solutions to nonlinear dynamic equations of higher order, Hacet. J. Math. Stat., 2016, 45, 417-427. |
[20] | S. H. Saker and D. O'Regan, New oscillation criteria for second-order neutral dynamic equations on time scales via Riccati substitution, Hiroshima Math. J., 2012, 42, 77-98. |
[21] | S. H. Saker, Oscillation of second-order nonlinear neutral delay dynamic equations on time scales, J. Comput. Appl. Math., 2006, 18, 123-141. |
[22] | S. H. Saker and D. O'Regan, New oscillation criteria for second-order neutral functional dynamic equations via the generalized Riccati substitution, Commun. Nonlinear Sci. Numer. Simulat., 2011, 16, 423-434. doi: 10.1016/j.cnsns.2009.11.032 |
[23] | T. Sun, H. Xi and W. Yu, Asymptotic behaviors of higher order nonlinear dynamic equations on time scales, Appl. Math. Comput., 2011, 37, 177-192. |
[24] | Q. Wang, Oscillation and asymptotic for second-order half-linear differential equations, Appl. Math. Comput., 2001, 10, 181-195. |
[25] | X. Wu, T. Sun, H. Xi and C. Chen, Kamenev-type oscillation criteria for higher-order nonlinear dynamic equations on time scales, Adv. Difference Equ., 2013, 248, 1-19. |
[26] | X. Wu and T. Sun, Oscillation criteria for higher order nonlinear delay dynamic equations on time scales, Math. Slovaca, 2016, 66, 627-650. doi: 10.1515/ms-2015-0166 |
[27] | X. Wu, Some oscillation criteria for a class of higher order nonlinear dynamic equations with a delay argument on time scales, Acta Math. Sci. Ser. B, 2021, 41, 1474-1492. doi: 10.1007/s10473-021-0505-6 |
[28] | X. Wu, T. Sun and J. Wang, Oscillatory behavior for certain higher order $p$-Laplacians functional dynamic equations of neutral type on time scales, Math. Methods Appl. Sci., 2022, 45, 10408-10423. doi: 10.1002/mma.8375 |
[29] | R. Xu and F. Meng, New Kamenev-type oscillation criteria for second order neutral nonlinear differential equations, Appl. Math. Comput., 2007, 188, 1364-1370. |
[30] | Y. Zhou, B. Ahmad and A. Alsaedi, Necessary and sufficient conditions for oscillation of second-order dynamic equations on time scales, Math. Methods Appl. Sci., 2019, 42, 4488-4497. |
[31] | Y. Zhou, Nonoscillation of higher order neutral dynamic equations on time scales, Appl. Math. Lett., 2019, 94, 204-209. |