2023 Volume 13 Issue 2
Article Contents

Xin Wu, Taixiang Sun. NEW OSCILLATION CRITERIA FOR A CLASS OF HIGHER-ORDER NEUTRAL FUNCTIONAL DYNAMIC EQUATIONS ON TIME SCALES[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 734-757. doi: 10.11948/20220051
Citation: Xin Wu, Taixiang Sun. NEW OSCILLATION CRITERIA FOR A CLASS OF HIGHER-ORDER NEUTRAL FUNCTIONAL DYNAMIC EQUATIONS ON TIME SCALES[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 734-757. doi: 10.11948/20220051

NEW OSCILLATION CRITERIA FOR A CLASS OF HIGHER-ORDER NEUTRAL FUNCTIONAL DYNAMIC EQUATIONS ON TIME SCALES

  • Corresponding author: Email: 3033@ecjtu.edu.cn(X. Wu) 
  • Fund Project: The authors were supported by the National Natural Science Foundation of China (12161039, 12261035), the Jiangxi Provincial Natural Science Foundation (20202BABL211003) and the Science and Technology Project of Jiangxi Education Department (GJJ180354)
  • In this paper, we study the higher-order neutral functional dynamic equations of the form

    $ \begin{equation*} L_ny(t)+q(t)f(|y(\theta(t))|^{\beta}sgn(y(\theta(t))))=0,\ \ t\in[t_0,\infty)_{\mathbb{T}}, \end{equation*} $

    on an arbitrary time scale $ \mathbb{T} $ with $ \sup\mathbb{T}=\infty $, where

    $ \begin{equation*} L_1y(t)=[y(t)+r(t)y(\tau(t))]^{\Delta},\ L_{i+1}y(t)=[p_i(t)|L_iy(t)|^{\alpha_i}sgn(L_iy(t))]^{\Delta}, \end{equation*} $

    $ \alpha_i $, $ 1\leq i\leq n-1 $ and $ \beta $ are positive constants, $ p_i $, $ 1\leq i\leq n-1 $ and $ q $ are rd-continuous functions from $ [t_0,\infty)_{{\mathbb{T}}} $ to $ [0,\infty) $ and $ r\in \mathrm{C}_{\mathrm{rd}}({\mathbb{T}},[0,1)) $. The functions $ \tau,\theta\in \mathrm{C}_{\mathrm{rd}}({\mathbb{T}},{\mathbb{T}}) $ satisfy $ \tau(t)\leq t $ and $ \lim_{t\rightarrow \infty}\tau(t)=\lim_{t\rightarrow \infty}\theta(t)=\infty $. Criteria are established for the oscillation of solutions for both even and odd order cases. The obtained results here generalize and improve some known results for oscillation of the corresponding higher-order ordinary differential equations [13], but the proof of these counterparts are quite different from the literature. Finally, some interesting examples are given to illustrate the versatility of our main results.

    MSC: 34K11, 39A10, 39A99
  • 加载中
  • [1] R. P. Agarwal, M. Bohner, T. Li and C. Zhang, Oscillation criteria for second-order dynamic equations on time scales, Appl. Math. Lett., 2014, 31, 34-40. doi: 10.1016/j.aml.2014.01.002

    CrossRef Google Scholar

    [2] R. P. Agarwal, S. R. Grace, D. O'Regan and A. Zafer, Oscillatory and asymptotic behavior of solutions for second-order nonlinear integro-dynamic equations on time scales, Electron. J. Differential Equations, 2014, 105, 1-14.

    Google Scholar

    [3] B. Baculikova, Oscillatory behavior of the second order general noncanonical differential equations, Appl. Math. Lett., 2020, 104, 1-5.

    Google Scholar

    [4] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.

    Google Scholar

    [5] X. Deng, Q. Wang and Z. Zhou, Generalized Philos-type oscillation criteria for second order nonlinear neutral delay dynamic equations on time scales, Appl. Math. Lett., 2016, 57, 69-76. doi: 10.1016/j.aml.2016.01.006

    CrossRef Google Scholar

    [6] L. H. Erbe, A. C. Peterson and S. H. Saker, Hille and Nehari type criteria for third-order dynamic equations, J. Math. Anal. Appl., 2007, 329, 112-131. doi: 10.1016/j.jmaa.2006.06.033

    CrossRef Google Scholar

    [7] L. H. Erbe, B. Karpuz and A. C. Peterson, Kamenev-type oscillation criteria for higher-order neutral delay dynamic equations, Int. J. Difference Equ., 2011, 6, 1-16.

    Google Scholar

    [8] M. Federson, R. Grau, J. G. Mesquita and E. Toon, Lyapunov stability for measure differential equations and dynamic equations on time scales, J. Differential Equations, 2019, 267, 4192-4233. doi: 10.1016/j.jde.2019.04.035

    CrossRef Google Scholar

    [9] T. S. Hassan, Oscillation criteria for half-linear dynamic equations on time scales, J. Math. Anal. Appl., 2008, 345, 176-185. doi: 10.1016/j.jmaa.2008.04.019

    CrossRef Google Scholar

    [10] T. S. Hassan, Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales, Appl. Math. Comput., 2011, 217, 5285-5297.

    Google Scholar

    [11] T. S. Hassan and D. O'Regan, Oscillatory behavior of solutions of dynamic equations of higher order on time scales, Rocky Mountain J. Math., 2020, 50, 599-617.

    Google Scholar

    [12] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., 1990, 18, 18-56. doi: 10.1007/BF03323153

    CrossRef Google Scholar

    [13] J. Jaros, An integral oscillation criterion for even order half-linear differential equations, Appl. Math. Lett., 2020, 104, 106257. doi: 10.1016/j.aml.2020.106257

    CrossRef Google Scholar

    [14] B. Karpuz, Asymptotic behaviour of bounded solutions of a class of higher-order neutral dynamic equations, Appl. Math. Comput., 2009, 215, 2174-2183.

    Google Scholar

    [15] B. Karpuz, Unbounded oscillation of higher-order nonlinear delay dynamic equations of neutral type with oscillating coefficients, Electron. J. Qual. Theory Differ. Equ., 2009, 34, 1-14.

    Google Scholar

    [16] B. Karpuz, Sufficient conditions for the oscillation and asymptotic behaviour of higher-order dynamic equations of neutral type, Appl. Math. Comput., 2013, 221, 453-462.

    Google Scholar

    [17] B. Karpuz, Comparison tests for the asymptotic behaviour of higher-order dynamic equations of neutral type, Forum Math., 2015, 27, 2759-2773.

    Google Scholar

    [18] S. S. Negi, S. Abbas, M. Malik and S. R. Grace, New oscillation criteria for p-Laplacian dynamic equations on time scales, Rocky Mountain J. Math., 2020, 50, 659-670.

    Google Scholar

    [19] D. O'Regan and T. S. Hassan, Oscillation criteria for solutions to nonlinear dynamic equations of higher order, Hacet. J. Math. Stat., 2016, 45, 417-427.

    Google Scholar

    [20] S. H. Saker and D. O'Regan, New oscillation criteria for second-order neutral dynamic equations on time scales via Riccati substitution, Hiroshima Math. J., 2012, 42, 77-98.

    Google Scholar

    [21] S. H. Saker, Oscillation of second-order nonlinear neutral delay dynamic equations on time scales, J. Comput. Appl. Math., 2006, 18, 123-141.

    Google Scholar

    [22] S. H. Saker and D. O'Regan, New oscillation criteria for second-order neutral functional dynamic equations via the generalized Riccati substitution, Commun. Nonlinear Sci. Numer. Simulat., 2011, 16, 423-434. doi: 10.1016/j.cnsns.2009.11.032

    CrossRef Google Scholar

    [23] T. Sun, H. Xi and W. Yu, Asymptotic behaviors of higher order nonlinear dynamic equations on time scales, Appl. Math. Comput., 2011, 37, 177-192.

    Google Scholar

    [24] Q. Wang, Oscillation and asymptotic for second-order half-linear differential equations, Appl. Math. Comput., 2001, 10, 181-195.

    Google Scholar

    [25] X. Wu, T. Sun, H. Xi and C. Chen, Kamenev-type oscillation criteria for higher-order nonlinear dynamic equations on time scales, Adv. Difference Equ., 2013, 248, 1-19.

    Google Scholar

    [26] X. Wu and T. Sun, Oscillation criteria for higher order nonlinear delay dynamic equations on time scales, Math. Slovaca, 2016, 66, 627-650. doi: 10.1515/ms-2015-0166

    CrossRef Google Scholar

    [27] X. Wu, Some oscillation criteria for a class of higher order nonlinear dynamic equations with a delay argument on time scales, Acta Math. Sci. Ser. B, 2021, 41, 1474-1492. doi: 10.1007/s10473-021-0505-6

    CrossRef Google Scholar

    [28] X. Wu, T. Sun and J. Wang, Oscillatory behavior for certain higher order $p$-Laplacians functional dynamic equations of neutral type on time scales, Math. Methods Appl. Sci., 2022, 45, 10408-10423. doi: 10.1002/mma.8375

    CrossRef Google Scholar

    [29] R. Xu and F. Meng, New Kamenev-type oscillation criteria for second order neutral nonlinear differential equations, Appl. Math. Comput., 2007, 188, 1364-1370.

    Google Scholar

    [30] Y. Zhou, B. Ahmad and A. Alsaedi, Necessary and sufficient conditions for oscillation of second-order dynamic equations on time scales, Math. Methods Appl. Sci., 2019, 42, 4488-4497.

    Google Scholar

    [31] Y. Zhou, Nonoscillation of higher order neutral dynamic equations on time scales, Appl. Math. Lett., 2019, 94, 204-209.

    Google Scholar

Article Metrics

Article views(1890) PDF downloads(343) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint