Citation: | Genghong Lin, Zhan Zhou, Jianshe Yu. EXISTENCE OF INFINITELY MANY HOMOCLINIC SOLUTIONS OF DISCRETE SCHRÖDINGER EQUATIONS WITH LOCAL SUBLINEAR TERMS[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 964-980. doi: 10.11948/20220047 |
We obtain sufficient conditions on the existence of infinitely many homoclinic solutions for a class of discrete Schrödinger equations when the nonlinearities are assumed just to be sublinear near the origin. The problem we are going to study in this paper has two main difficulties, one is that the nonlinear terms are locally sublinear and the other is that the associated variational functional is indefinite. Some new techniques including cutoff methods and compact inclusions are applied here to overcome these two difficulties. Our results also improve some existing ones in the literature.
[1] | S. Ai, J. Li, J. Yu and B. Zheng, Stage-structured models for interactive wild and periodically and impulsively released sterile mosquitoes, Discrete Contin. Dyn. Syst., 2022. doi: 10.3934/dcdsb.2021172. |
[2] | Z. Balanov, C. G. Azpeitia and W. Krawcewicz, On variational and topological methods in nonlinear difference equations, Comm. Pure Appl. Anal., 2018, 17, 2813-2844. doi: 10.3934/cpaa.2018133 |
[3] | J. Barrow and P. Parsons, Inflationary models with logarithmic potentials, Phys. Rev. D, 1995, 52, 5576-5587. doi: 10.1103/PhysRevD.52.5576 |
[4] | G. Chen, Homoclinic solutions for perturbed discrete Schrödinger systems in infinite lattices: sublinear and asymptotically linear cases, Appl. Math. Lett., 2021, 117, 107062. doi: 10.1016/j.aml.2021.107062 |
[5] | G. Chen and S. Ma, Perturbed Schrödinger lattice systems: existence of homoclinic solutions, Proc. R. Soc. Edinb. Sect. A, 2019, 149, 1083-1096. doi: 10.1017/prm.2018.106 |
[6] | G. Chen and M. Schechter, Multiple homoclinic solutions for discrete Schrödinger equations with perturbed and sublinear terms, Z. Angew. Math. Phys., 2021, 72, 63. doi: 10.1007/s00033-021-01503-z |
[7] | G. Chen and J. Sun, Infinitely many homoclinic solutions for sublinear and nonperiodic Schrödinger lattice systems, Bound. Value Probl., 2021, 2021, 6. doi: 10.1186/s13661-020-01479-1 |
[8] | P. Chen and X. He, Existence and multiplicity of homoclinic solutions for second order nonlinear difference equations with Jacobi operators, Math. Methods Appl. Sci., 2016, 39, 5705-5719. doi: 10.1002/mma.3955 |
[9] | S. Chen, X. Tang and J. Yu, Sign-changing ground state solutions for discrete nonlinear Schrödinger equations, J. Differ. Equ. Appl., 2019, 25, 202-218. doi: 10.1080/10236198.2018.1563601 |
[10] | D. N. Christodoulides, F. Lederer and Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature, 2003, 424, 817-823. doi: 10.1038/nature01936 |
[11] | A. Comecha, J. Cuevasb and P. G. Kevrekidis, Discrete peakons, Physica D, 2005, 207, 137-160. doi: 10.1016/j.physd.2005.05.019 |
[12] | L. Ding and J. Wei, Notes on gap solitons for periodic discrete nonlinear Schrödinger equations, Math. Methods Appl. Sci., 2018, 41, 6673-6682. doi: 10.1002/mma.5183 |
[13] | K. Enqvist and J. McDonald, Q-balls and baryogenesis in the MSSM, Phys. Lett. B, 1998, 425, 309-321. doi: 10.1016/S0370-2693(98)00271-8 |
[14] | L. Erbe, B. Jia and Q. Zhang, Homoclinic solutions of discrete nonlinear systems via variational method, J. Appl. Anal. Comput., 2019, 9, 271-294. |
[15] | S. Flach and A. V. Gorbach, Discrete breathers—Advance in theory and applications, Phys. Rep., 2008, 467, 1-116. |
[16] | J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis and D. N. Christodoulides, Observation of discrete solitons in optically induced real time waveguide arrays, Phys. Rev. Lett., 2003, 90, 023902. doi: 10.1103/PhysRevLett.90.023902 |
[17] | J. W. Fleischer, M. Segev, N. K. Efremidis and D. N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature, 2003, 422, 147-150. doi: 10.1038/nature01452 |
[18] | G. Kopidakis, S. Aubry and G. P. Tsironis, Targeted energy transfer through discrete breathers in nonlinear systems, Phys. Rev. Lett., 2001, 87, 165501. doi: 10.1103/PhysRevLett.87.165501 |
[19] | J. Kuang and Z. Guo, Homoclinic solutions of a class of periodic difference equations with asymptotically linear nonlinearities, Nonlinear Anal., 2013, 89, 208-218. doi: 10.1016/j.na.2013.05.012 |
[20] | G. Lin and Y. Hui, Stability analysis in a mosquito population suppression model, J. Biol. Dynam., 2020, 14, 578-589. doi: 10.1080/17513758.2020.1792565 |
[21] | G. Lin, J. Yu and Z. Zhou, Homoclinic solutions of discrete nonlinear Schrödinger equations with partially sublinear nonlinearities, Electron. J. Differ. Equ., 2019, 96, 1-14. |
[22] | G. Lin and Z. Zhou, Homoclinic solutions in periodic difference equations with mixed nonlinearities, Math. Methods Appl. Sci., 2016, 39, 245-260. doi: 10.1002/mma.3474 |
[23] | G. Lin and Z. Zhou, Homoclinic solutions in non-periodic discrete $\phi$-Laplacian equations with mixed nonlinearities, Appl. Math. Lett., 2017, 64, 15-20. doi: 10.1016/j.aml.2016.08.001 |
[24] | G. Lin and Z. Zhou, Homoclinic solutions of discrete $\phi$-Laplacian equations with mixed nonlinearities, Comm. Pure Appl. Anal., 2018, 17, 1723-1747. doi: 10.3934/cpaa.2018082 |
[25] | G. Lin, Z. Zhou and J. Yu, Ground state solutions of discrete asymptotically linear Schrödinger equations with bounded and non-periodic potentials, J. Dyn. Differ. Equ., 2020, 32, 527-555. doi: 10.1007/s10884-019-09743-4 |
[26] | G. Lin, J. Ji, L. Wang and J. Yu, Multitype bistability and long transients in a delayed spruce budworm population model, J. Differential Equations, 2021, 283, 263-289. doi: 10.1016/j.jde.2021.02.034 |
[27] | G. Lin and J. Yu, Existence of a ground state and infinitely many homoclinic solutions for a periodic discrete system with sign-changing mixed nonlinearities, J. Geom. Anal., 2022, 32, 127. doi: 10.1007/s12220-022-00866-7. |
[28] | G. Lin and J. Yu, Homoclinic solutions of periodic discrete Schrödinger equations with local superquadratic conditions, SIAM J. Math. Anal., 2022, 54, 1966-2005. doi: 10.1137/21M1413201 |
[29] | S. Ma and Z. Wang, Multibump solutions for discrete periodic nonlinear Schrödinger equations, Z. Angew. Math. Phys., 2013, 64, 1413-1442. doi: 10.1007/s00033-012-0295-8 |
[30] | A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations, Nonlinearity, 2006, 19, 27-40. doi: 10.1088/0951-7715/19/1/002 |
[31] | A. Pankov and V. Rothos, Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity, Proc. R. Soc. A, 2008, 464, 3219-3236. doi: 10.1098/rspa.2008.0255 |
[32] | H. Shi and Y. Zhang, Standing wave solutions for the discrete nonlinear Schrödinger equations with indefinite sign subquadratic potentials, Appl. Math. Lett., 2016, 58, 95-102. doi: 10.1016/j.aml.2016.02.010 |
[33] | X. Tang, Non-Nehari manifold method for periodic discrete superlinear Schrödinger equation, Acta Math. Sin. Engl. Ser., 2016, 32, 463-473. doi: 10.1007/s10114-016-4262-8 |
[34] | M. Willem, Minimax theorems, Birkhäuser, Boston, MA, 1996. |
[35] | J. Yu and J. Li, Global asymptotic stability in an interactive wild and sterile mosquito model, J. Differential Equations, 2020, 269, 6193-6215. doi: 10.1016/j.jde.2020.04.036 |
[36] | J. Yu and J. Li, A delay suppression model with sterile mosquitoes release period equal to wild larvae maturation period, J. Math. Biol., 2022, 84, 14. doi: 10.1007/s00285-022-01718-2. |
[37] | J. Yu and J. Li, Discrete-time models for interactive wild and sterile mosquitoes with general time steps, Math. Biosci., 2022, 346, 108797. doi: 10.1016/j.mbs.2022.108797. |
[38] | G. Zhang and A. Pankov, Standing waves of discrete nonlinear Schrödinger equations with growing potential, Commun. Math. Anal., 2008, 5, 38-49. |
[39] | G. Zhang, Breather solutions of the discrete nonlinear Schrödinger equations with unbounded potentials, J. Math. Phys., 2009, 50, 013505. doi: 10.1063/1.3036182 |
[40] | Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions, Comm. Pure Appl. Anal., 2019, 18, 425-434. doi: 10.3934/cpaa.2019021 |
[41] | B. Zheng, J. Li and J. Yu, One discrete dynamical model on Wolbachia infection frequency in mosquito populations, Sci. China Math., 2021. doi: 10.1007/s11425-021-1891-7. |
[42] | B. Zheng, J. Li and J. Yu, Existence and stability of periodic solutions in a mosquito population suppression model with time delay, J. Differential Equations, 2022, 315, 159-178. doi: 10.1016/j.jde.2022.01.036 |
[43] | B. Zheng and J. Yu, Existence and uniqueness of periodic orbits in a discrete model on Wolbachia infection frequency, Adv. Nonlinear Anal., 2022, 11, 212-224. |
[44] | B. Zheng and J. Yu, At most two periodic solutions for a switching mosquito population suppression model, J. Dyn. Differ. Equ., 2022. doi: 10.1007/s10884-021-10125-y. |
[45] | B. Zheng, J. Yu and J. Li, Modeling and analysis of the implementation of the Wolbachia incompatible and sterile insect technique for mosquito population suppression, SIAM J. Appl. Math., 2021, 81, 718-740. doi: 10.1137/20M1368367 |
[46] | Z. Zhou and D. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math., 2015, 58, 781-790. doi: 10.1007/s11425-014-4883-2 |
[47] | Z. Zhou and J. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, J. Differ. Equations, 2010, 249, 1199-1212. doi: 10.1016/j.jde.2010.03.010 |
[48] | Z. Zhou and J. Yu, Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity, Acta. Math. Sin. Engl. Ser., 2013, 29, 1809-1822. doi: 10.1007/s10114-013-0736-0 |
[49] | Z. Zhou, J. Yu and Y. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity, Sci. China Math., 2011, 54, 83-93. doi: 10.1007/s11425-010-4101-9 |
[50] | Q. Zhu, Z. Zhou and L. Wang, Existence and stability of discrete solitons in nonlinear Schrödinger lattices with hard potentials, Physica D, 2020, 403, 132326. doi: 10.1016/j.physd.2019.132326 |