2022 Volume 12 Issue 3
Article Contents

Yingxian Zhu, Shuangfei Li, Yunxian Dai. STABILITY ANALYSIS OF A FRACTIONAL PREDATOR-PREY SYSTEM WITH TWO DELAYS AND INCOMMENSURATE ORDERS[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 981-1006. doi: 10.11948/20220093
Citation: Yingxian Zhu, Shuangfei Li, Yunxian Dai. STABILITY ANALYSIS OF A FRACTIONAL PREDATOR-PREY SYSTEM WITH TWO DELAYS AND INCOMMENSURATE ORDERS[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 981-1006. doi: 10.11948/20220093

STABILITY ANALYSIS OF A FRACTIONAL PREDATOR-PREY SYSTEM WITH TWO DELAYS AND INCOMMENSURATE ORDERS

  • Dedicated to Professor Jibin Li on the occasion of his 80th birthday.
  • Corresponding author: Email: dyxian1976@sina.com (Y. Dai)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 11761040)
  • In this paper, we consider a fractional predator-prey system with two delays and incommensurate orders. Firstly, the local stability of positive equilibrium of the system without delay is discussed. Secondly, we calculate the critical value of Hopf bifurcation by taking one delay as bifurcation parameter. Then, as two nonidentical delays change simultaneously, the stability switching curves, the directions of crossing and the existence of Hopf bifurcation are obtained. Finally, numerical simulations are presented to verify the given theoretical results.

    MSC: 34C23, 34C60
  • 加载中
  • [1] M. Agarwal and R. Pathak, Harvesting and Hopf Bifurcation in a prey-predator model with Holling Type Ⅳ Functional Response, Int. J. Math. Soft Comput., 2012, 2(1), 83-92. doi: 10.26708/IJMSC.2012.1.2.10

    CrossRef Google Scholar

    [2] J. Alidousti and M. M. Ghahfarokhi, Stability and bifurcation for time delay fractional predator-prey system by incorporating the dispersal of prey, Appl. Math. Model., 2019, 72, 385-402. doi: 10.1016/j.apm.2019.03.029

    CrossRef Google Scholar

    [3] M. Banerjee and E. Venturino, A phytoplankton-toxic phytoplankton-zooplankton model, Ecol. Complex., 2011, 8(3), 239-248. doi: 10.1016/j.ecocom.2011.04.001

    CrossRef Google Scholar

    [4] L. Chang, G. Sun, Z. Wang and Z. Jin, Rich dynamics in a spatial predator–prey model with delay, Appl. Math. Comput., 2015, 256, 540-550.

    Google Scholar

    [5] D. Copot, R. De Keyser, E. Derom, M. Ortigueira and M. Ionescu Clara, Reducing bias in fractional order impedance estimation for lung function evaluation, Biomed. Signal Proces. Control, 2018, 39, 74-80. doi: 10.1016/j.bspc.2017.07.009

    CrossRef Google Scholar

    [6] W. Deng, C. Li and J. Lü, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn., 2007, 48(4), 409-416. doi: 10.1007/s11071-006-9094-0

    CrossRef Google Scholar

    [7] E. H. Doha, A. H. Bhrawy and S. S. Ezz-Eldien, A new Jacobi operational matrix: an application for solving fractional differential equations, Appl. Math. Model., 2012, 36(10), 4931-4943. doi: 10.1016/j.apm.2011.12.031

    CrossRef Google Scholar

    [8] G. S. Frederico and D. F. Torres, Fractional conservation laws in optimal control theory, Nonlinear Dyn., 2008, 53(3), 215-222. doi: 10.1007/s11071-007-9309-z

    CrossRef Google Scholar

    [9] S. Gakkhar, K. Negi and S. K. Sahani, Effects of seasonal growth on ratio dependent delayed prey predator system, Commun. Nonlinear Sci. Numer. Simul., 2009, 14(3), 850-862. doi: 10.1016/j.cnsns.2007.10.013

    CrossRef Google Scholar

    [10] K. Gu, S. I. Niculescu and J. Chen, On stability crossing curves for general systems with two delays, J. Math. Anal. Appl., 2005, 311(1), 231-253. doi: 10.1016/j.jmaa.2005.02.034

    CrossRef Google Scholar

    [11] L. Guerrini, A. Matsumoto and F. Szidarovszky, Delay Cournot duopoly models revisited, Chaos, 2018, 28(9), 093113. doi: 10.1063/1.5020903

    CrossRef Google Scholar

    [12] R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000.

    Google Scholar

    [13] C. Huang, X. Zhao, X. Wang, Z. Wang, M. Xiao and J. Cao, Disparate delays-induced bifurcations in a fractional-order neural network, J. Frankl. Inst. Eng. Appl. Math., 2019, 356(5), 2825-2846. doi: 10.1016/j.jfranklin.2018.11.027

    CrossRef Google Scholar

    [14] T. K. Kar and A. Ghorai, Dynamic behaviour of a delayed predator–prey model with harvesting, Appl. Math. Comput., 2011, 217(22), 9085-9104.

    Google Scholar

    [15] N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 2000, 62(3), 3135-3145. doi: 10.1103/PhysRevE.62.3135

    CrossRef Google Scholar

    [16] X. Lin and H. Wang, Stability analysis of delay differential equations with two discrete delays, Can. Appl. Math. Q., 2012, 20(4), 519-533.

    Google Scholar

    [17] X. Liu and H. Fang, Periodic pulse control of Hopf bifurcation in a fractional-order delay predator-prey model incorporating a prey refuge, Adv. Differ. Equ., 2019, 2019(1), 1-30. doi: 10.1186/s13662-018-1939-6

    CrossRef Google Scholar

    [18] B. B. Mandelbrot, The fractal geometry of nature, WH freeman, New York, 1982.

    Google Scholar

    [19] D. Matignon, Stability results for fractional differential equations with applications to control processing, Computational Engineering in Systems Applications, 1996, 2(1), 963-968.

    Google Scholar

    [20] A. Matsumoto and F. Szidarovszky, Nonlinear Cournot duopoly with implementation delays, Chaos Solitons Fractals, 2015, 79, 157-165. doi: 10.1016/j.chaos.2015.05.010

    CrossRef Google Scholar

    [21] C. I. Muresan, C. Ionescu, S. Folea and R. De Keyser, Fractional order control of unstable processes: the magnetic levitation study case, Nonlinear Dyn., 2015, 80(4), 1761-1772. doi: 10.1007/s11071-014-1335-z

    CrossRef Google Scholar

    [22] M. D. Ortigueira, Fractional calculus for scientists and engineers, Springer Science & Business Media, Berlin, Heidelberg, 2011.

    Google Scholar

    [23] N. Pecora and M. Sodini, A heterogenous Cournot duopoly with delay dynamics: Hopf bifurcations and stability switching curves, Commun. Nonlinear Sci. Numer. Simul., 2018, 58, 36-46. doi: 10.1016/j.cnsns.2017.06.015

    CrossRef Google Scholar

    [24] I. Podlubny, Fractional differential equations, Academic Press, New York, 1999.

    Google Scholar

    [25] F. A. Rihan, S. Lakshmanan, A. H. Hashish, R. Rakkiyappan and E. Ahmed, Fractional-order delayed predator-prey systems with Holling type-Ⅱ functional response, Nonlinear Dyn., 2015, 80(1), 777-789.

    Google Scholar

    [26] A. Singh, A. Parwaliya and A. Kumar, Hopf bifurcation and global stability of density-dependent model with discrete delays involving Beddington-DeAngelis functional response, Math. Meth. Appl. Sci., 2021, 44(11), 8838-8861. doi: 10.1002/mma.7311

    CrossRef Google Scholar

    [27] P. Song, H. Zhao and X. Zhang, Dynamic analysis of a fractional order delayed predator-prey system with harvesting, Theory Biosci., 2016, 135(1), 59-72.

    Google Scholar

    [28] S. Wang, H. Tang and Z. Ma, Hopf bifurcation of a multiple-delayed predator-prey system with habitat complexity, Math. Comput. Simul., 2021, 180, 1-23. doi: 10.1016/j.matcom.2020.08.008

    CrossRef Google Scholar

    [29] C. Xu, X. Tang, M. Liao and X. He, Bifurcation analysis in a delayed Lokta–Volterra predator–prey model with two delays, Nonlinear Dyn., 2011, 66(1), 169-183.

    Google Scholar

    [30] C. Xu, M. Liao, P. Li, Y. Guo and Z. Liu, Bifurcation properties for fractional order delayed BAM neural networks, Cogn. Comput., 2021, 13(2), 322-356. doi: 10.1007/s12559-020-09782-w

    CrossRef Google Scholar

    [31] J. Yuan, L. Zhao, C. Huang and M. Xiao, Stability and bifurcation analysis of a fractional predator-prey model involving two nonidentical delays, Math. Comput. Simul., 2021, 181, 562-580. doi: 10.1016/j.matcom.2020.10.013

    CrossRef Google Scholar

    [32] L. Zhao, C. Huang and J. Cao, Dynamics of fractional-order predator-prey model incorporating two delays, Fractals-Complex Geom. Patterns Scaling Nat. Soc., 2021, 29(01), 2150014.

    Google Scholar

Figures(12)

Article Metrics

Article views(1914) PDF downloads(429) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint