Citation: | Aissa Guesmia. SOME $L^Q (\mathbb{R})$-NORM DECAY ESTIMATES ($Q\in[1,+\infty]$) FOR TWO CAUCHY SYSTEMS OF TYPE RAO-NAKRA SANDWICH BEAM WITH A FRICTIONAL DAMPING OR AN INFINITE MEMORY[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2511-2540. doi: 10.11948/20220055 |
In this paper, we consider two systems of type Rao-Nakra sandwich beam in the whole line $ \mathbb{R} $ with a frictional damping or an infinite memory acting on the Euler-Bernoulli equation. When the speeds of propagation of the two wave equations are equal, we show that the solutions do not converge to zero when time goes to infinity. In the reverse situation, we prove some $ L^2 (\mathbb{R}) $-norm and $ L^1 (\mathbb{R}) $-norm decay estimates of solutions and theirs higher order derivatives with respect to the space variable. Thanks to interpolation inequalities and Carlson inequality, these $ L^2 (\mathbb{R}) $-norm and $ L^1 (\mathbb{R}) $-norm decay estimates lead to similar ones in the $ L^q (\mathbb{R}) $-norm, for any $ q\in [1,+\infty] $. In our both $ L^2 (\mathbb{R}) $-norm and $ L^1 (\mathbb{R}) $-norm decay estimates, we specify the decay rates in terms of the regularity of the initial data and the nature of the control.
[1] | A. Allen and S. Hansen, Analyticity of a multilayer mead-markus plate, Nonlinear Analysis: Theory, Methods and Applications, 2009, 71, 1835-1842. doi: 10.1016/j.na.2009.02.063 |
[2] | A. Allen and S. Hansen, Analyticity and optimal damping for a multilayer mead-markus sandwich beam, Discrete and Continuous Dynamical Systems, 2010, B14, 1279-1292. |
[3] | S. Barza, V. Burenkov, J. Pecarić and L. Persson, Sharp multidimensional multiplicative inequalities for weighted $L_p$ spaces with homogeneous weights, Math. Inequal. Appl., 1998, 1, 53-67. |
[4] | J. A. C. Bresse, Cours de Méchanique Appliquée, Mallet Bachelier, Paris, 1859. |
[5] | M. M. Cavalcanti, V. N. Domingos Cavalcanti, F. A. Falcao Nascimento, I. Lasiecka and J. H. Rodrigues, Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping, Z. Angew. Math. Phys., 2014, 65, 1189-1206. doi: 10.1007/s00033-013-0380-7 |
[6] | D. S. Chandrasekharaiah, Hyperbolic thermoelasticity: a review of recent literatur, Appl. Mech. Rev., 1998, 51, 705-729. |
[7] | C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 1970, 37, 297-308. doi: 10.1007/BF00251609 |
[8] | B. Feng, T. Ma, R. N. Monteiro and C. A. Raposo, Dynamics of laminated Timoshenko beam, J. Dynam. Diff. Equa., 2018, 30, 1489-1507. doi: 10.1007/s10884-017-9604-4 |
[9] | A. Guesmia, On the stability of a laminated Timoshenko problem with interfacial slip in the whole space under frictional dampings or infinite memories, Nonauton. Dyn. Syst., 2020, 7, 194-218. doi: 10.1515/msds-2020-0114 |
[10] | A. Guesmia, Well-posedness and stability results for laminated Timoshenko beams with interfacial slip and infinite memory, IMA J. Math. Cont. Info., 2020, 37, 300-350. |
[11] | A. Guesmia, S. Messaoudi and A. Soufyane, On the stabilization for a linear Timoshenko system with infinite history and applications to the coupled Timoshenko-heat systems, Elec. J. Diff. Equa., 2012, 2012, 1-45. doi: 10.1186/1687-1847-2012-1 |
[12] | S. W. Hansen and O. Y. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions, Math. Control Relat. Fields, 2011, 1, 189-230. |
[13] | S. W. Hansen and O. Y. Imanuvilov, Exact controllability of a multilayer Rao-Nakra Plate with clamped boundary conditions, ESAIM Control Optim. Calc. Var., 2011, 17, 1101-1132. |
[14] | S. Hansen and Z. Liu, Analyticity of Semigroup Associated with a Laminated Composite Beam, Springer, Boston, MA, USA, 1999, 47-54. |
[15] | S. W. Hansen and R. Rajaram, Riesz basis property and related results for a Rao-Nakra sandwich beam, Discrete Contin. Dyn. Syst., 2005, 365-375. |
[16] | S. W. Hansen and R. Rajaram, Simultaneous boundary control of a Rao-Nakra sandwich beam, In: Proc. 44th IEEE Conference on Decision and Control and European Control Conference, 2005, 3146-3151. |
[17] | S. W. Hansen and R. Spies, Structural damping in a laminated beam due to interfacial slip, J. Sound Vib., 1997, 204, 183-202. |
[18] | L. I. Ignat and J. D. Rossi, Asymptotic expansions for nonlocal diffusion equations in $L^q$-norms for $1 \leq q \leq 2$, J. Math. Anal. Appl., 2010, 362, 190-199. |
[19] | Y. Li, Z. Liu and Y. Whang, Weak stability of a laminated beam, Math. Control Relat. Fields, 2018, 8, 789-808. |
[20] | Z. Liu, B. Rao and Q. Zheng, Polynomial stability of the Rao-Nakra beam with a single internal viscous damping, J. Diff. Equa., 2020, 269, 6125-6162. |
[21] | Z. Liu, S. A. Trogdon and J. Yong, Modeling and analysis of a laminated beam, Math. Comput. Model., 1999, 30, 149-167. |
[22] | H. W. Lord and Y. A. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 1967, 15, 299-309. |
[23] | D. Mead and S. Markus, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions, J. Sound and Vibration, 1969, 10, 163-175. |
[24] | D. Ouchenane and A. Rahmoune, General decay result of the Timoshenko system in thermoelasticity of second sound, Elect. J. Math. Anal. Appl., 2018, 6, 45-64. |
[25] | A. Özkan Özer and S. W. Hansen, Uniform stabilization of a multilayer Rao-Nakra sandwich beam, Evol. Equ. Control Theory, 2013, 2, 695-710. |
[26] | A. Özkan Özer and S. W. Hansen, Exact boundary controllability results for a multilayer Rao-Nakra sandwich beam, SIAM J. Control Optim., 2014, 52, 1314-1337. |
[27] | R. Racke, Thermoelasticity with second sound-exponential stability in linear and non-linear 1-d, Math. Methods Appl. Sci., 2002, 25, 409-441. |
[28] | R. Rajaram, Exact boundary controllability result for a Rao-Nakra sandwich beam, Systems Control Lett., 2007, 56, 558-567. |
[29] | Y. V. K. S. Rao and B. C. Nakra, Vibrations of unsymmetrical sanwich beams and plates with viscoelastic cores, J. Sound Vibr., 1974, 3, 309-326. |
[30] | C. A. Raposo, O. P. Vera Villagran, J. Ferreira and E. Piskin, Rao-Nakra sandwich beam with second sound, Part. Diff. Equa. Appl. Math., 2021, 4, 1-5. |
[31] | Y. Sadasiva Rao and B. Nakra, Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores, J. Sound and Vibration, 1974, 34, 309-326. |
[32] | B. Said-Houari and A. Soufyane, The effect of frictional damping terms on the decay rate of the Bresse system, Evol. Equa. Cont. Theory, 2014, 3, 713-738. |
[33] | H. D. F. Sare and R. Racke, On the stability of damped Timoshenko systems - Cattaneo versus Fourier law, Arch Ration Mech. Anal., 2009, 194, 221-251. |
[34] | G. Teschl, Ordinary differential equations and dynamical systems, American Mathematical Soc., 2012, 140, ISBN: 978-0-8218-8328-0. |
[35] | S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Lond. Edinb. Dublin. Philos. Mag., 1921, 641, 744-746. |
[36] | M. Yan and E. H. Dowell, Governing Equations for Vibrating Constrained-Layer Damping Sandwich Plates and Beams, J. Appl. Mech., 1972, 39, 1041-1046. |