2022 Volume 12 Issue 6
Article Contents

Aissa Guesmia. SOME $L^Q (\mathbb{R})$-NORM DECAY ESTIMATES ($Q\in[1,+\infty]$) FOR TWO CAUCHY SYSTEMS OF TYPE RAO-NAKRA SANDWICH BEAM WITH A FRICTIONAL DAMPING OR AN INFINITE MEMORY[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2511-2540. doi: 10.11948/20220055
Citation: Aissa Guesmia. SOME $L^Q (\mathbb{R})$-NORM DECAY ESTIMATES ($Q\in[1,+\infty]$) FOR TWO CAUCHY SYSTEMS OF TYPE RAO-NAKRA SANDWICH BEAM WITH A FRICTIONAL DAMPING OR AN INFINITE MEMORY[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2511-2540. doi: 10.11948/20220055

SOME $L^Q (\mathbb{R})$-NORM DECAY ESTIMATES ($Q\in[1,+\infty]$) FOR TWO CAUCHY SYSTEMS OF TYPE RAO-NAKRA SANDWICH BEAM WITH A FRICTIONAL DAMPING OR AN INFINITE MEMORY

  • Author Bio: Aissa Guesmia, Email address: aissa.guesmia@univ-lorraine.fr
  • In this paper, we consider two systems of type Rao-Nakra sandwich beam in the whole line $ \mathbb{R} $ with a frictional damping or an infinite memory acting on the Euler-Bernoulli equation. When the speeds of propagation of the two wave equations are equal, we show that the solutions do not converge to zero when time goes to infinity. In the reverse situation, we prove some $ L^2 (\mathbb{R}) $-norm and $ L^1 (\mathbb{R}) $-norm decay estimates of solutions and theirs higher order derivatives with respect to the space variable. Thanks to interpolation inequalities and Carlson inequality, these $ L^2 (\mathbb{R}) $-norm and $ L^1 (\mathbb{R}) $-norm decay estimates lead to similar ones in the $ L^q (\mathbb{R}) $-norm, for any $ q\in [1,+\infty] $. In our both $ L^2 (\mathbb{R}) $-norm and $ L^1 (\mathbb{R}) $-norm decay estimates, we specify the decay rates in terms of the regularity of the initial data and the nature of the control.

    MSC: 34B05, 34D05, 34H05, 35B40, 35L45, 74H40, 93D20, 93D15
  • 加载中
  • [1] A. Allen and S. Hansen, Analyticity of a multilayer mead-markus plate, Nonlinear Analysis: Theory, Methods and Applications, 2009, 71, 1835-1842. doi: 10.1016/j.na.2009.02.063

    CrossRef Google Scholar

    [2] A. Allen and S. Hansen, Analyticity and optimal damping for a multilayer mead-markus sandwich beam, Discrete and Continuous Dynamical Systems, 2010, B14, 1279-1292.

    Google Scholar

    [3] S. Barza, V. Burenkov, J. Pecarić and L. Persson, Sharp multidimensional multiplicative inequalities for weighted $L_p$ spaces with homogeneous weights, Math. Inequal. Appl., 1998, 1, 53-67.

    Google Scholar

    [4] J. A. C. Bresse, Cours de Méchanique Appliquée, Mallet Bachelier, Paris, 1859.

    Google Scholar

    [5] M. M. Cavalcanti, V. N. Domingos Cavalcanti, F. A. Falcao Nascimento, I. Lasiecka and J. H. Rodrigues, Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping, Z. Angew. Math. Phys., 2014, 65, 1189-1206. doi: 10.1007/s00033-013-0380-7

    CrossRef Google Scholar

    [6] D. S. Chandrasekharaiah, Hyperbolic thermoelasticity: a review of recent literatur, Appl. Mech. Rev., 1998, 51, 705-729.

    Google Scholar

    [7] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 1970, 37, 297-308. doi: 10.1007/BF00251609

    CrossRef Google Scholar

    [8] B. Feng, T. Ma, R. N. Monteiro and C. A. Raposo, Dynamics of laminated Timoshenko beam, J. Dynam. Diff. Equa., 2018, 30, 1489-1507. doi: 10.1007/s10884-017-9604-4

    CrossRef Google Scholar

    [9] A. Guesmia, On the stability of a laminated Timoshenko problem with interfacial slip in the whole space under frictional dampings or infinite memories, Nonauton. Dyn. Syst., 2020, 7, 194-218. doi: 10.1515/msds-2020-0114

    CrossRef Google Scholar

    [10] A. Guesmia, Well-posedness and stability results for laminated Timoshenko beams with interfacial slip and infinite memory, IMA J. Math. Cont. Info., 2020, 37, 300-350.

    Google Scholar

    [11] A. Guesmia, S. Messaoudi and A. Soufyane, On the stabilization for a linear Timoshenko system with infinite history and applications to the coupled Timoshenko-heat systems, Elec. J. Diff. Equa., 2012, 2012, 1-45. doi: 10.1186/1687-1847-2012-1

    CrossRef Google Scholar

    [12] S. W. Hansen and O. Y. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions, Math. Control Relat. Fields, 2011, 1, 189-230.

    Google Scholar

    [13] S. W. Hansen and O. Y. Imanuvilov, Exact controllability of a multilayer Rao-Nakra Plate with clamped boundary conditions, ESAIM Control Optim. Calc. Var., 2011, 17, 1101-1132.

    Google Scholar

    [14] S. Hansen and Z. Liu, Analyticity of Semigroup Associated with a Laminated Composite Beam, Springer, Boston, MA, USA, 1999, 47-54.

    Google Scholar

    [15] S. W. Hansen and R. Rajaram, Riesz basis property and related results for a Rao-Nakra sandwich beam, Discrete Contin. Dyn. Syst., 2005, 365-375.

    Google Scholar

    [16] S. W. Hansen and R. Rajaram, Simultaneous boundary control of a Rao-Nakra sandwich beam, In: Proc. 44th IEEE Conference on Decision and Control and European Control Conference, 2005, 3146-3151.

    Google Scholar

    [17] S. W. Hansen and R. Spies, Structural damping in a laminated beam due to interfacial slip, J. Sound Vib., 1997, 204, 183-202.

    Google Scholar

    [18] L. I. Ignat and J. D. Rossi, Asymptotic expansions for nonlocal diffusion equations in $L^q$-norms for $1 \leq q \leq 2$, J. Math. Anal. Appl., 2010, 362, 190-199.

    Google Scholar

    [19] Y. Li, Z. Liu and Y. Whang, Weak stability of a laminated beam, Math. Control Relat. Fields, 2018, 8, 789-808.

    Google Scholar

    [20] Z. Liu, B. Rao and Q. Zheng, Polynomial stability of the Rao-Nakra beam with a single internal viscous damping, J. Diff. Equa., 2020, 269, 6125-6162.

    Google Scholar

    [21] Z. Liu, S. A. Trogdon and J. Yong, Modeling and analysis of a laminated beam, Math. Comput. Model., 1999, 30, 149-167.

    Google Scholar

    [22] H. W. Lord and Y. A. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 1967, 15, 299-309.

    Google Scholar

    [23] D. Mead and S. Markus, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions, J. Sound and Vibration, 1969, 10, 163-175.

    Google Scholar

    [24] D. Ouchenane and A. Rahmoune, General decay result of the Timoshenko system in thermoelasticity of second sound, Elect. J. Math. Anal. Appl., 2018, 6, 45-64.

    Google Scholar

    [25] A. Özkan Özer and S. W. Hansen, Uniform stabilization of a multilayer Rao-Nakra sandwich beam, Evol. Equ. Control Theory, 2013, 2, 695-710.

    Google Scholar

    [26] A. Özkan Özer and S. W. Hansen, Exact boundary controllability results for a multilayer Rao-Nakra sandwich beam, SIAM J. Control Optim., 2014, 52, 1314-1337.

    Google Scholar

    [27] R. Racke, Thermoelasticity with second sound-exponential stability in linear and non-linear 1-d, Math. Methods Appl. Sci., 2002, 25, 409-441.

    Google Scholar

    [28] R. Rajaram, Exact boundary controllability result for a Rao-Nakra sandwich beam, Systems Control Lett., 2007, 56, 558-567.

    Google Scholar

    [29] Y. V. K. S. Rao and B. C. Nakra, Vibrations of unsymmetrical sanwich beams and plates with viscoelastic cores, J. Sound Vibr., 1974, 3, 309-326.

    Google Scholar

    [30] C. A. Raposo, O. P. Vera Villagran, J. Ferreira and E. Piskin, Rao-Nakra sandwich beam with second sound, Part. Diff. Equa. Appl. Math., 2021, 4, 1-5.

    Google Scholar

    [31] Y. Sadasiva Rao and B. Nakra, Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores, J. Sound and Vibration, 1974, 34, 309-326.

    Google Scholar

    [32] B. Said-Houari and A. Soufyane, The effect of frictional damping terms on the decay rate of the Bresse system, Evol. Equa. Cont. Theory, 2014, 3, 713-738.

    Google Scholar

    [33] H. D. F. Sare and R. Racke, On the stability of damped Timoshenko systems - Cattaneo versus Fourier law, Arch Ration Mech. Anal., 2009, 194, 221-251.

    Google Scholar

    [34] G. Teschl, Ordinary differential equations and dynamical systems, American Mathematical Soc., 2012, 140, ISBN: 978-0-8218-8328-0.

    Google Scholar

    [35] S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Lond. Edinb. Dublin. Philos. Mag., 1921, 641, 744-746.

    Google Scholar

    [36] M. Yan and E. H. Dowell, Governing Equations for Vibrating Constrained-Layer Damping Sandwich Plates and Beams, J. Appl. Mech., 1972, 39, 1041-1046.

    Google Scholar

Article Metrics

Article views(2200) PDF downloads(313) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint