2022 Volume 12 Issue 3
Article Contents

Yongkun Li, Xiaoli Huang. WEYL ALMOST PERIODIC FUNCTIONS ON TIME SCALES AND WEYL ALMOST PERIODIC SOLUTIONS OF DYNAMIC EQUATIONS WITH DELAYS[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 1022-1042. doi: 10.11948/20220102
Citation: Yongkun Li, Xiaoli Huang. WEYL ALMOST PERIODIC FUNCTIONS ON TIME SCALES AND WEYL ALMOST PERIODIC SOLUTIONS OF DYNAMIC EQUATIONS WITH DELAYS[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 1022-1042. doi: 10.11948/20220102

WEYL ALMOST PERIODIC FUNCTIONS ON TIME SCALES AND WEYL ALMOST PERIODIC SOLUTIONS OF DYNAMIC EQUATIONS WITH DELAYS

  • Dedicated to Professor Jibin Li on the occasion of his 80th birthday.
  • Corresponding author: Email: yklie@ynu.edu.cn(Y. Li) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11861072)
  • Due to the incompleteness of the space composed of Weyl almost periodic functions, there are few results on the existence of Weyl almost periodic solutions of differential equations. In addition, as a discrete analogs of differential equations, there is almost no result of the existence of Weyl almost periodic solutions of difference equations. Because dynamic equations on time scales can unify the study of differential equations and difference equations. Therefore, in this paper, we first propose a concept of Weyl almost periodic functions on time scales. Then, taking a Clifford-valued neural network with time-varying delays on time scales as an example of dynamic equations on time scales, we study the existence and stability of Weyl almost periodic solutions of this neural network on time scales. Even when the system we consider degenerates into a real-valued system, our results are new. A numerical example is given to illustrate the feasibility of our results.

    MSC: 34K14, 34K20, 92B20
  • 加载中
  • [1] J. Ao and N. Liu, Third order boundary value problem with finite spectrum on time scales, J. Appl. Anal. Comput., 2020, 10(5), 1869-1877.

    Google Scholar

    [2] C. Aouiti and F. Dridi, Weighted pseudo almost automorphic solutions for neutral type fuzzy cellular neural networks with mixed delays and D operator in Clifford algebra, Int. J. Syst. Sci., 2020, 51(10), 1759-1781. doi: 10.1080/00207721.2020.1777345

    CrossRef Google Scholar

    [3] C. Aouiti and I. B. Gharbia, Dynamics behavior for second-order neutral Clifford differential equations: inertial neural networks with mixed delays, Comput. Appl. Math., 2020. DOI: 10.1007/s40314-020-01148-0.

    CrossRef Google Scholar

    [4] C. Aouiti, I. B. Gharbia, J. Cao and X. Li, Asymptotic behavior of Clifford-valued dynamic systems with D-operator on time scales, Adv. Differ. Equ., 2021. DOI: 10.1186/s13662-021-03266-3.

    CrossRef Google Scholar

    [5] A. S. Besicovitch, Almost Periodic Functions, Dover, New York, 1954.

    Google Scholar

    [6] M. Bohner and G. S. Guseinov, Double integral calculus of variations on time scales, Comput. Math. Appl., 2007, 54(1), 45-57. doi: 10.1016/j.camwa.2006.10.032

    CrossRef Google Scholar

    [7] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkhäuser, Boston, 2001.

    Google Scholar

    [8] H. Bohr, Zur Theorie der fastperiodischen Funktionen, I, Acta Math., 1925, 45, 29-127. doi: 10.1007/BF02395468

    CrossRef Google Scholar

    [9] H. Bohr, Zur Theorie der fastperiodischen Funktionen, II, Acta Math., 1925 46, 101-214. doi: 10.1007/BF02543859

    CrossRef Google Scholar

    [10] S. Buchholz, A theory of neural computation with Clifford algebras, Ph. D. thesis, University of Kiel, 2005.

    Google Scholar

    [11] A. Cabada and D. R. Vivero, Expression of the Lebesgue $\Delta$-integral on time scales as a usual Lebesgue integral; application to the calculus of $\Delta$-antiderivatives, Math. Comput. Modelling, 2006, 43, 194-207. doi: 10.1016/j.mcm.2005.09.028

    CrossRef Google Scholar

    [12] A. Chaouki and F. Touati, Global dissipativity of Clifford-valued multidirectional associative memory neural networks with mixed delays, Comput. Appl. Math., 2020. DOI: 10.1007/s40314-020-01367-5.

    CrossRef Google Scholar

    [13] C. Corduneanu, Almost periodic oscillations and waves, Springer, New York, 2009.

    Google Scholar

    [14] B. Du, Y. Liu, H. A. Batarfi and F. E. Alsaadi, Almost periodic solution for a neutral-type neural networks with distributed leakage delays on time scales, Neurocomputing, 2016, 173, 921-929. doi: 10.1016/j.neucom.2015.08.047

    CrossRef Google Scholar

    [15] M. Es-saiydy and M. Zitane, Weighted Stepanov-like pseudo almost periodicity on time scales and applications, Differ. Equ. Dyn. Syst., 2020. In press, DOI: 10.1007/s12591-020-00543-7.

    Google Scholar

    [16] J. Gao, Q. Wang and L. Zhang, Existence and stability of almost-periodic solutions for cellular neural networks with time-varying delays in leakage terms on time scales, Appl. Math. Comput., 2014, 237, 639-649.

    Google Scholar

    [17] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Result Math., 1990, 18(1-2), 18-56. doi: 10.1007/BF03323153

    CrossRef Google Scholar

    [18] E. Hitzer, T. Nitta and Y. Kuroe, Applications of Clifford's geomeric algebra, Adv. Appl. Clifford Algebras, 2013, 23(2), 377-404. doi: 10.1007/s00006-013-0378-4

    CrossRef Google Scholar

    [19] S. Hong and Y. Peng, Almost periodicity of set-valued functions and set dynamic equations on time scales, Inform. Sci., 2016, 330, 157-174. doi: 10.1016/j.ins.2015.10.008

    CrossRef Google Scholar

    [20] S. Huang, Y. Qiao and G. Wen, Real and Complex Clifford Analysis, Springer, New York, 2006.

    Google Scholar

    [21] Q. Jiang and Q. Wang, Almost periodic solutions for quaternion-valued neural networks with mixed delays on time scales, Neurocomputing, 2021, 439, 363-373. doi: 10.1016/j.neucom.2020.09.063

    CrossRef Google Scholar

    [22] M. Kéré, G. M. Guérékata and E. R. Oueama, An existence result of $\mu $-pseudo almost automorphic solutions of Clifford-valued semi-linear delay differential equations, Malaya J. Mat., 2021, 9(3), 129-140.

    Google Scholar

    [23] B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, London, 1982.

    Google Scholar

    [24] Y. Li, Almost periodic functions on the quantum time scale and applications, Discrete Dynamics in Nature and Society, 2019. DOI: 10.1155/2019/4529159.

    CrossRef Google Scholar

    [25] Y. Li and B. Li, Pseudo compact almost automorphy of neutral type Clifford-valued neural networks with mixed delays, Discrete Contin. Dyn. Syst. B, 2021, in press, doi: 10.3934/dcdsb.2021248.

    CrossRef Google Scholar

    [26] Y. Li and S. Shen, Compact almost automorphic function on time scales and its application, Qual. Theory Dynam. Syst., 2021. DOI: 10.1007/s12346-021-00522-5.

    CrossRef Google Scholar

    [27] Y. Li and C. Wang, Uniformly almost periodic functions and almost periodic solutions to dynamic equations on time scales, Abstract and Applied Analysis, 2011. DOI: 10.1155/2011/341520.

    CrossRef Google Scholar

    [28] Y. Li and C. Wang, Pseudo almost periodic functions and pseudo almost periodic solutions to dynamic equations on time scales, Adv. Differ. Equ., 2012. DOI: 10.1186/1687-1847-2012-77.

    CrossRef Google Scholar

    [29] Y. Li and P. Wang, Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales, Discrete Contin. Dyn. Syst. S, 2017, 10(3), 463-473. doi: 10.3934/dcdss.2017022

    CrossRef Google Scholar

    [30] Y. Li, X. Wang and N. Huo, Weyl almost automorphic solutions in distribution sense of Clifford-valued stochastic neural networks with time-varying delays, Proceedings of the Royal Society A, 2022, 478(2257), 20210719. DOI: 10.1098/rspa.2021.0719.

    CrossRef Google Scholar

    [31] H. Liu, Half-linear Volterra-Fredholm type integral inequalities on time scales and their applications, J. Appl. Anal. Comput., 2020, 10(1), 234-248.

    Google Scholar

    [32] Y. Liu, P. Xu, J. Lu and J. Liang, Global stability of Clifford-valued recurrent neural networks with time delays, Nonlinear Dyn., 2016, 84(2), 767-777. doi: 10.1007/s11071-015-2526-y

    CrossRef Google Scholar

    [33] C. Lizama, J. G. Mesquita and R. Ponce, A connection between almost periodic functions defined on timescales and $\mathbb{R}$, Applic. Anal., 2014, 93(12), 2547-2558. doi: 10.1080/00036811.2013.875161

    CrossRef Google Scholar

    [34] G. Rajchakit, R. Sriraman, N. Boonsatit, P. Hammachukiattikul, C. P. Lim and P. Agarwal, Global exponential stability of Clifford-valued neural networks with time-varying delays and impulsive effects, Adv. Differ. Equ., 2021. DOI: 10.1186/s13662-021-03367-z.

    CrossRef Google Scholar

    [35] G. Rajchakit, R. Sriraman, P. Vignesh and C. P. Lim, Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis, Appl. Math. Comput., 2021. DOI: 10.1016/j.amc.2021.126309.

    CrossRef Google Scholar

    [36] V. V. Stepanov, Sur quelques généralisations des fonctions presque périodiques, C. R. Acad. Sci. Paris, 1925, 181, 90-92.

    Google Scholar

    [37] C. Tang and H. Li, Stepanov-like pseudo almost periodic functions on time scales and applications to dynamic equations with delay, Open Math., 2018, 16(1), 826-841. doi: 10.1515/math-2018-0073

    CrossRef Google Scholar

    [38] C. Tang and H. Li, Bochner-like transform and Stepanov almost periodicity on time scales with applications, Symmetry, 2018. DOI: 10.3390/sym10110566.

    CrossRef Google Scholar

    [39] H. Weyl, Integralgleichungen und fastperiodische Funktionen, Math. Ann., 1926, 97, 338-356.

    Google Scholar

    [40] C. Xu, P. Li and Y. Pang, Existence and global exponential stability of almost periodic solutions for BAM neural networks with distributed leakage delays on time scales, J. Appl. Anal. Comput., 2017, 7(4), 1200-1232.

    Google Scholar

    [41] Z. Yan and X. Jia, Stepanov-like pseudo almost periodic solutions for impulsive perturbed partial stochastic differential equations and its optimal control, J. Appl. Anal. Comput., 2020, 10(2), 530-568.

    Google Scholar

    [42] Z. Yao, Existence and exponential stability of unique almost periodic solution for Lasota-Wazewska red blood cell model with perturbation on time scales, Math. Meth. Appl. Sci., 2017, 40(13), 4709-4715.

    Google Scholar

    [43] X. Yu and Q. Wang, Weighted pseudo-almost periodic solutions for shunting inhibitory cellular neural networks on time scales, Bull. Malays. Math. Sci. Soc., 2019, 42(5), 2055-2074. doi: 10.1007/s40840-017-0595-4

    CrossRef Google Scholar

Figures(6)

Article Metrics

Article views(2675) PDF downloads(528) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint