2023 Volume 13 Issue 5
Article Contents

Qianjun Chen, Zijian Liu, Yuanshun Tan, Jin Yang. ANALYSIS OF A STOCHASTIC NONAUTONOMOUS HYBRID POPULATION MODEL WITH IMPULSIVE PERTURBATIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2365-2386. doi: 10.11948/20220108
Citation: Qianjun Chen, Zijian Liu, Yuanshun Tan, Jin Yang. ANALYSIS OF A STOCHASTIC NONAUTONOMOUS HYBRID POPULATION MODEL WITH IMPULSIVE PERTURBATIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2365-2386. doi: 10.11948/20220108

ANALYSIS OF A STOCHASTIC NONAUTONOMOUS HYBRID POPULATION MODEL WITH IMPULSIVE PERTURBATIONS

  • In this paper, we propose a stochastic nonautonomous hybrid population model with Allee effect, Markovian switching and impulsive perturbations and investigate its stochastic dynamics. We first establish sufficient conditions for the extinction and permanence. Then, we study some asymptotic properties and the lower- and upper-growth rates of the positive solutions. Finally, by performing numerical simulations we verify the main results and analyze the impact on the system from the Allee effect, the Markovian switching and the impulsive perturbations.

    MSC: 34F05
  • 加载中
  • [1] W. J. Anderson, Continuous-time Markov Chains: An Application-Oriented Approach, Springer, New York, 2012.

    Google Scholar

    [2] G. Arthi, R. Sivasangari and Y. Ma, Existence and controllability for impulsive fractional stochastic evolution systems with state-dependent delay, J. Appl. Anal. Comput., 2023, 13(1), 95–115.

    Google Scholar

    [3] L. Berec, E. Angulo and F. Courchamp, Multiple Allee effects and population management, Trends in Ecol. Evolut., 2007, 22(4), 185–191. doi: 10.1016/j.tree.2006.12.002

    CrossRef Google Scholar

    [4] Y. Deng and M. Liu, Analysis of a stochastic tumor-immune model with regime switching and impulsive perturbations, Appl. Math. Modell., 2020, 78, 482–504. doi: 10.1016/j.apm.2019.10.010

    CrossRef Google Scholar

    [5] B. Dennis, Allee effects: population growth, critical density, and the chance of extinction, Natural Resource Modeling, 1989, 3(4), 481–538. doi: 10.1111/j.1939-7445.1989.tb00119.x

    CrossRef Google Scholar

    [6] L. Donald, Persistence of dynamical systems under random perturbations, J. Siam Review, 1975, 17(4), 605–640. doi: 10.1137/1017070

    CrossRef Google Scholar

    [7] A. Freedman, Stochastic Differential Equations and their Applications, Academic Press, San Diego, 1976.

    Google Scholar

    [8] T. C. Gard, Introduction to Stochastic Differential Equations, Marcel Dekker Inc New York, 1988, 84(408), 19–19.

    Google Scholar

    [9] J. Golec and S. Sathananthan, Stability analysis of a stochastic logistic model, J. Math. Comput. Modell., 2003, 38(5–6), 585–593. doi: 10.1016/S0895-7177(03)90029-X

    CrossRef Google Scholar

    [10] J. Hou, Z. Teng and S. Gao, Permanence and global stability for nonautonomous N-species Lotka-Valterra competitive system with impulses, Nonlinear Anal. : RWA, 2010, 11(3), 1882–1896. doi: 10.1016/j.nonrwa.2009.04.012

    CrossRef Google Scholar

    [11] W. Ji, Permanence and extinction of a stochastic hybrid population model with Allee effect, Physica A: Sta. Mec. Appl., 2019, 533, 122075. doi: 10.1016/j.physa.2019.122075

    CrossRef Google Scholar

    [12] D. Jiang, N. Shi and X. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 2008, 340(1), 588–597. doi: 10.1016/j.jmaa.2007.08.014

    CrossRef Google Scholar

    [13] X. Jiang, L. Zu, D. Jiang, et al., Analysis of a Stochastic Holling Type Ⅱ Predator-Prey Model Under Regime Switching, Bull. Malays. Math. Sci. Soc., 2020, 43(3), 2171–2197. doi: 10.1007/s40840-019-00798-6

    CrossRef Google Scholar

    [14] Y. Jiang, Z. Liu, J. Yang, et al., Dynamics of a stochastic Gilpin-Ayala population model with Markovian switching and impulsive perturbations, Adv. Differ. Equ., 2020, 2020(1), 1–17. doi: 10.1186/s13662-019-2438-0

    CrossRef Google Scholar

    [15] R. Z. Khasminskii, C. Zhu and G. Yin, Stability of regime-switching diffusions, Stochastic Process. Appl., 2007, 117(8), 1037–1051. doi: 10.1016/j.spa.2006.12.001

    CrossRef Google Scholar

    [16] D. Kuang, Q. Yin and J. Li, Stationary distribution and extinction of stochastic HTLV-I infection model with CTL immune response under regime switching, J. Nonlinear Model. Anal., 2020, 2(4), 585–600.

    Google Scholar

    [17] X. Li, A. Gray, D. Jiang, et al., Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, J. Math. Anal. Appl., 2011, 376(1), 11–28. doi: 10.1016/j.jmaa.2010.10.053

    CrossRef Google Scholar

    [18] X. Li and G. Yin, Logistic models with regime switching: permanence and ergodicity, J. Math. Anal. Appl., 2016, 441(2), 593–611. doi: 10.1016/j.jmaa.2016.04.016

    CrossRef Google Scholar

    [19] A. Liebhold and J. Bascompte, The Allee effect, stochastic dynamics and the eradication of alien species, Ecology Letters, 2003, 6(2), 133–40. doi: 10.1046/j.1461-0248.2003.00405.x

    CrossRef Google Scholar

    [20] B. Liu, X. Liu and X. Liao, Existence and uniqueness and stability of solutions for stochastic impulsive systems, J. Syst. Sci. & Complexity, 2007, 20(1), 149–158.

    Google Scholar

    [21] M. Liu and M. Deng, Permanence and extinction of a stochastic hybrid model for tumor growth, Appl. Math. Lett., 2019, 94, 66–72. doi: 10.1016/j.aml.2019.02.016

    CrossRef Google Scholar

    [22] M. Liu and M. Deng, Analysis of a stochastic hybrid population model with Allee effect, Appl. Math. Comput., 2020, 364, 124582.

    Google Scholar

    [23] M. Liu and K. Wang, Persistence and extinction in stochastic non-autonomous logistic systems, J. Math. Anal. Appl., 2011, 375(2), 443–457. doi: 10.1016/j.jmaa.2010.09.058

    CrossRef Google Scholar

    [24] M. Liu and K. Wang, On a stochastic logistic equation with impulsive perturbations, Comput. Math. Appl., 2012, 63(5), 871–886. doi: 10.1016/j.camwa.2011.11.003

    CrossRef Google Scholar

    [25] M. Liu and K. Wang, Dynamics and simulations of a logistic model with impulsive perturbations in a random environment, Math. Comput. Simulat., 2013, 92, 53–75. doi: 10.1016/j.matcom.2013.04.011

    CrossRef Google Scholar

    [26] Q. Luo and X. Mao, Stochastic population dynamics under regime switching, J. Math. Anal. Appl., 2007, 334(1), 69–84. doi: 10.1016/j.jmaa.2006.12.032

    CrossRef Google Scholar

    [27] X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, London, 2006.

    Google Scholar

    [28] J. Shi and R. Shivaji, Persistence in reaction diffusion models with weak allee effect, J. Math. Biol., 2006, 52(6), 807–829. doi: 10.1007/s00285-006-0373-7

    CrossRef Google Scholar

    [29] L. Shu, X. Shu, Q. Zhu and F. Xu, Existence and exponential stability of mild solutions for second-order neutral stochastic functional differential equation with random impulses, J. Appl. Anal. Comput., 2021, 11(1), 59–80.

    Google Scholar

    [30] J. Wang, J. Shi and J. Wei, Predator-prey system with strong Allee effect in prey, J. Math. Biol., 2011, 62(3), 291–331. doi: 10.1007/s00285-010-0332-1

    CrossRef Google Scholar

    [31] R. Wu, Dynamics of stochastic hybrid Gilpin-Ayala system with impulsive perturbations, J. Nonlinear Sci. Appl., 2017, 10(2), 436–450. doi: 10.22436/jnsa.010.02.10

    CrossRef Google Scholar

    [32] Z. Wu, P. Cheng, Z. Wei, et al., Ginzburg-Landau equations with random switching and impulsive perturbations, Commun. Nonlinear Sci. Numer. Simulat., 2019, 79, 104912. doi: 10.1016/j.cnsns.2019.104912

    CrossRef Google Scholar

    [33] X. Yu, S. Yuan and T. Zhang, Persistence and ergodicity of a stochastic single species model with Allee effect under regime switching, Commun. Nonlinear Sci. Numer. Simulat., 2018, 59, 359–374. doi: 10.1016/j.cnsns.2017.11.028

    CrossRef Google Scholar

    [34] S. Zhang, X. Meng, T. Feng, et al., Dynamics analysis and numerical simulations of a stochastic non-autonomous predator-prey system with impulsive effects, Nonlinear Anal. : Hybrid Systems, 2017, 26, 19–37. doi: 10.1016/j.nahs.2017.04.003

    CrossRef Google Scholar

Figures(6)  /  Tables(1)

Article Metrics

Article views(1818) PDF downloads(484) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint