2023 Volume 13 Issue 5
Article Contents

Xudong Luo, Qiaozhen Ma. TIME-DEPENDENT ASYMPTOTIC BEHAVIOR OF THE WAVE EQUATION WITH STRONG DAMPING ON $\mathbb{R}^{N}$[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2387-2407. doi: 10.11948/20220264
Citation: Xudong Luo, Qiaozhen Ma. TIME-DEPENDENT ASYMPTOTIC BEHAVIOR OF THE WAVE EQUATION WITH STRONG DAMPING ON $\mathbb{R}^{N}$[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2387-2407. doi: 10.11948/20220264

TIME-DEPENDENT ASYMPTOTIC BEHAVIOR OF THE WAVE EQUATION WITH STRONG DAMPING ON $\mathbb{R}^{N}$

  • Author Bio: Email: luoxudong117@163.com(X. Luo)
  • Corresponding author: Email: maqzh@nwnu.edu.cn(Q. Ma)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 11961059)
  • We study the longtime dynamics of non-autonomous wave equations with strong damping in the case of critical nonlinearity. First of all, when $ 1\leq p\leq p^{\ast}=\frac{N+2}{(N-2)_{+}} $, we get the well-posedness of strong damped equation with dime-dependent decay coefficient in $ \mathcal{H}_{t}=H^{1}(\mathbb{R}^{N})\times L^{2}(\mathbb{R}^{N}) $, and prove the quasi-stability of weak solution in $ \mathcal{H}_{t, -1}=H^{1}(\mathbb{R}^{N})\times H^{-1}(\mathbb{R}^{N}) $. Then the time-dependent attractor is proved in $ \mathcal{H}_{t} $. Finally, by using the quasi-stability of weak solution, we establish the existence the pullback exponential attractor for non-autonomous dynamical system $ (U(t, \tau), \mathcal{H}_{t}, \mathcal{H}_{t, -1}) $.

    MSC: 35B25, 35B40, 35B41, 37L30
  • 加载中
  • [1] A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equation in an unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A, 1990, 116, 221–243. doi: 10.1017/S0308210500031498

    CrossRef Google Scholar

    [2] J. M. Ball, Global attractors for damped semilinear wave equations, Discret. Contin. Dyn. Syst., 2004, 10, 31–52.

    Google Scholar

    [3] A. N. Carvalho and J. W. Cholewa, Attractors for strongly damped wave equations with critical nonlinearities, Pacific J. Math., 2002, 207, 287–310. doi: 10.2140/pjm.2002.207.287

    CrossRef Google Scholar

    [4] I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Diff. Equ., 2012, 252, 1229–1262. doi: 10.1016/j.jde.2011.08.022

    CrossRef Google Scholar

    [5] M. Conti and V. Pata, Asymptotic structure of the attractor for processes on time-dependent spaces, Nonlinear Analysis RWA, 2014, 19, 1–10.

    Google Scholar

    [6] M. Conti and V. Pata, On the time-dependent cattaneo law in space dimension one, Applied Mathematic and Computation, 2015, 259, 32–44. doi: 10.1016/j.amc.2015.02.039

    CrossRef Google Scholar

    [7] M. Conti and V. Pata, On the regularity of global attractors, Discrete Cont. Dyn. Sys., 2009, 25, 1209–1217. doi: 10.3934/dcds.2009.25.1209

    CrossRef Google Scholar

    [8] M. Conti, V. Pata and R. Temam, Attractors for processes on time-dependent spaces, Applications to wave equations, J. Differential Equations, 255, 2013, 1254–1277. doi: 10.1016/j.jde.2013.05.013

    CrossRef Google Scholar

    [9] V. V. Chepyzhov, M. Conti and V. Pata, A minimal approach to the theory of global attractor, Discrete Contin. Dyn. Syst., 2012, 32, 2079–2088. doi: 10.3934/dcds.2012.32.2079

    CrossRef Google Scholar

    [10] F. DellOro and V. Pata, Long-term analysis of strongly damped nonlinear wave equations, Nonlinearity, 2011, 24, 3413–3435. doi: 10.1088/0951-7715/24/12/006

    CrossRef Google Scholar

    [11] F. Di Plinio, G. S. Duane and R. Temam, Time-Dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst., 2011, 29, 141–167. doi: 10.3934/dcds.2011.29.141

    CrossRef Google Scholar

    [12] P. Ding, Z. Yang and Y. Li, Global attractor of the Kirchhoff wave models with strong nonlinear damping, Appl. Math. Lett., 2018, 76, 40–45. doi: 10.1016/j.aml.2017.07.008

    CrossRef Google Scholar

    [13] A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 1992, 15, 253–264. doi: 10.1080/01495739208946136

    CrossRef Google Scholar

    [14] A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 1993, 31, 189–208. doi: 10.1007/BF00044969

    CrossRef Google Scholar

    [15] A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media, Ⅰ. Classical continuum physics, Proc. Roy. Soc. London A, 1995, 448, 335–356. doi: 10.1098/rspa.1995.0020

    CrossRef Google Scholar

    [16] A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media, Ⅱ. Generalized continua, Proc. Roy. Soc. London A, 1995, 448, 357–377. doi: 10.1098/rspa.1995.0021

    CrossRef Google Scholar

    [17] A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media, Ⅲ. Mixtures of interacting continua, Proc. Roy. Soc. London A, 1995, 448, 379–388. doi: 10.1098/rspa.1995.0022

    CrossRef Google Scholar

    [18] T. Liu and Q. Ma, Time-dependent attractor for plate equations on $\mathbb{R}^{N}$, J. Math. Anal. Appl., 2019, 479, 315–332. doi: 10.1016/j.jmaa.2019.06.028

    CrossRef $\mathbb{R}^{N}$" target="_blank">Google Scholar

    [19] Y. Li and Z. Yang, Robustness of attractors for non-autonomous Kirchhoff wave models with strong nonlinear damping, Appl. Math. Opt., 2019.

    Google Scholar

    [20] Q. Ma, J. Wang and T. Liu, Time-dependent asymptotic behavior of the solution for wave equations with linear memory, Comput. Math. Appl., 2018, 76, 1372–1387. doi: 10.1016/j.camwa.2018.06.031

    CrossRef Google Scholar

    [21] H. Ma and C. Zhong, Attractors for the Kirchhoff equations with strong nonlinear damping, Appl. Math. Lett., 2017, 74, 127–133. doi: 10.1016/j.aml.2017.06.002

    CrossRef Google Scholar

    [22] H. F. Smith and C. D. Sogge, Global Strichartz estimates for non-trapping perturbations of the Laplacian, Comm. Partial Differential Equations, 2000, 25, 2171–2183. doi: 10.1080/03605300008821581

    CrossRef Google Scholar

    [23] J. Simon, Compact sets in the space $L^{p(0,T;B)}$, Ann. Mat. Pur. Appl., 1986, 146, 65–96. doi: 10.1007/BF01762360

    CrossRef $L^{p(0,T;B)}$" target="_blank">Google Scholar

    [24] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition. App. Math. Sci., Springer-Verlag, New York, 1997, 68.

    Google Scholar

    [25] Y. Wang and C. Zhong, Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models, Discret. Contin. Dyn. Syst., 2013, 7, 3189–3209.

    Google Scholar

    [26] B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Phys. D, 1999, 128, 41–52. doi: 10.1016/S0167-2789(98)00304-2

    CrossRef Google Scholar

    [27] Z. Yang and Y. Li, Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous Kirchhoff wave models, Discret, Contin. Dyn. Syst., 2018, 38, 2629–2653.

    Google Scholar

    [28] Z. Yang and P. Ding, Longtime dynamics of Kirchhoff equation with strong damping and critical nonlinearity on $\mathbb{R}^{N}$, J. Math. Anal. Appl., 2016, 434, 1826–1851.

    $\mathbb{R}^{N}$" target="_blank">Google Scholar

Article Metrics

Article views(1680) PDF downloads(367) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint