Citation: | Xudong Luo, Qiaozhen Ma. TIME-DEPENDENT ASYMPTOTIC BEHAVIOR OF THE WAVE EQUATION WITH STRONG DAMPING ON $\mathbb{R}^{N}$[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2387-2407. doi: 10.11948/20220264 |
We study the longtime dynamics of non-autonomous wave equations with strong damping in the case of critical nonlinearity. First of all, when $ 1\leq p\leq p^{\ast}=\frac{N+2}{(N-2)_{+}} $, we get the well-posedness of strong damped equation with dime-dependent decay coefficient in $ \mathcal{H}_{t}=H^{1}(\mathbb{R}^{N})\times L^{2}(\mathbb{R}^{N}) $, and prove the quasi-stability of weak solution in $ \mathcal{H}_{t, -1}=H^{1}(\mathbb{R}^{N})\times H^{-1}(\mathbb{R}^{N}) $. Then the time-dependent attractor is proved in $ \mathcal{H}_{t} $. Finally, by using the quasi-stability of weak solution, we establish the existence the pullback exponential attractor for non-autonomous dynamical system $ (U(t, \tau), \mathcal{H}_{t}, \mathcal{H}_{t, -1}) $.
[1] | A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equation in an unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A, 1990, 116, 221–243. doi: 10.1017/S0308210500031498 |
[2] | J. M. Ball, Global attractors for damped semilinear wave equations, Discret. Contin. Dyn. Syst., 2004, 10, 31–52. |
[3] | A. N. Carvalho and J. W. Cholewa, Attractors for strongly damped wave equations with critical nonlinearities, Pacific J. Math., 2002, 207, 287–310. doi: 10.2140/pjm.2002.207.287 |
[4] | I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Diff. Equ., 2012, 252, 1229–1262. doi: 10.1016/j.jde.2011.08.022 |
[5] | M. Conti and V. Pata, Asymptotic structure of the attractor for processes on time-dependent spaces, Nonlinear Analysis RWA, 2014, 19, 1–10. |
[6] | M. Conti and V. Pata, On the time-dependent cattaneo law in space dimension one, Applied Mathematic and Computation, 2015, 259, 32–44. doi: 10.1016/j.amc.2015.02.039 |
[7] | M. Conti and V. Pata, On the regularity of global attractors, Discrete Cont. Dyn. Sys., 2009, 25, 1209–1217. doi: 10.3934/dcds.2009.25.1209 |
[8] | M. Conti, V. Pata and R. Temam, Attractors for processes on time-dependent spaces, Applications to wave equations, J. Differential Equations, 255, 2013, 1254–1277. doi: 10.1016/j.jde.2013.05.013 |
[9] | V. V. Chepyzhov, M. Conti and V. Pata, A minimal approach to the theory of global attractor, Discrete Contin. Dyn. Syst., 2012, 32, 2079–2088. doi: 10.3934/dcds.2012.32.2079 |
[10] | F. DellOro and V. Pata, Long-term analysis of strongly damped nonlinear wave equations, Nonlinearity, 2011, 24, 3413–3435. doi: 10.1088/0951-7715/24/12/006 |
[11] | F. Di Plinio, G. S. Duane and R. Temam, Time-Dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst., 2011, 29, 141–167. doi: 10.3934/dcds.2011.29.141 |
[12] | P. Ding, Z. Yang and Y. Li, Global attractor of the Kirchhoff wave models with strong nonlinear damping, Appl. Math. Lett., 2018, 76, 40–45. doi: 10.1016/j.aml.2017.07.008 |
[13] | A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 1992, 15, 253–264. doi: 10.1080/01495739208946136 |
[14] | A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 1993, 31, 189–208. doi: 10.1007/BF00044969 |
[15] | A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media, Ⅰ. Classical continuum physics, Proc. Roy. Soc. London A, 1995, 448, 335–356. doi: 10.1098/rspa.1995.0020 |
[16] | A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media, Ⅱ. Generalized continua, Proc. Roy. Soc. London A, 1995, 448, 357–377. doi: 10.1098/rspa.1995.0021 |
[17] | A. E. Green and P. M. Naghdi, A unified procedure for construction of theories of deformable media, Ⅲ. Mixtures of interacting continua, Proc. Roy. Soc. London A, 1995, 448, 379–388. doi: 10.1098/rspa.1995.0022 |
[18] | T. Liu and Q. Ma, Time-dependent attractor for plate equations on $\mathbb{R}^{N}$, J. Math. Anal. Appl., 2019, 479, 315–332. doi: 10.1016/j.jmaa.2019.06.028 |
[19] | Y. Li and Z. Yang, Robustness of attractors for non-autonomous Kirchhoff wave models with strong nonlinear damping, Appl. Math. Opt., 2019. |
[20] | Q. Ma, J. Wang and T. Liu, Time-dependent asymptotic behavior of the solution for wave equations with linear memory, Comput. Math. Appl., 2018, 76, 1372–1387. doi: 10.1016/j.camwa.2018.06.031 |
[21] | H. Ma and C. Zhong, Attractors for the Kirchhoff equations with strong nonlinear damping, Appl. Math. Lett., 2017, 74, 127–133. doi: 10.1016/j.aml.2017.06.002 |
[22] | H. F. Smith and C. D. Sogge, Global Strichartz estimates for non-trapping perturbations of the Laplacian, Comm. Partial Differential Equations, 2000, 25, 2171–2183. doi: 10.1080/03605300008821581 |
[23] | J. Simon, Compact sets in the space $L^{p(0,T;B)}$, Ann. Mat. Pur. Appl., 1986, 146, 65–96. doi: 10.1007/BF01762360 |
[24] | R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition. App. Math. Sci., Springer-Verlag, New York, 1997, 68. |
[25] | Y. Wang and C. Zhong, Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models, Discret. Contin. Dyn. Syst., 2013, 7, 3189–3209. |
[26] | B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Phys. D, 1999, 128, 41–52. doi: 10.1016/S0167-2789(98)00304-2 |
[27] | Z. Yang and Y. Li, Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous Kirchhoff wave models, Discret, Contin. Dyn. Syst., 2018, 38, 2629–2653. |
[28] | Z. Yang and P. Ding, Longtime dynamics of Kirchhoff equation with strong damping and critical nonlinearity on $\mathbb{R}^{N}$, J. Math. Anal. Appl., 2016, 434, 1826–1851. |