Citation: | Jiahui Tang, Yifan Xu, Wei Wang. A FILLED PENALTY FUNCTION METHOD FOR SOLVING CONSTRAINED OPTIMIZATION PROBLEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 809-825. doi: 10.11948/20220125 |
An important method to solve constrained optimization problem is to approach the optimal solution of constrained optimization problem gradually by sequential unconstrained optimization method, namely penalty function method. And the filling function method is one of the effective methods to solve the global optimal problem. In this paper, a class of augmented Lagrangian objective filled penalty functions are defined to solve non-convex constraint optimization problems, the authors call it filled penalty function method. The theoretical properties of these functions, such as exactness, smoothness, global convergence, are discussed. On this basis, a local optimization algorithm and an approximate global optimization algorithm with corresponding examples are given for solving constrained optimization problems.
[1] | T. Antczak, Exactness of penalization for exact minimax penalty function method in nonconvex programming, Appl. Math. Mech. -Engl. Ed., 2015, 36, 541-556. DOI: 10.1007/s10483-015-1929-9 |
[2] | N. Echebest, M. D. Sanchez and M. L. Schuverdt, Convergence results of an augmented Lagrangian method using the exponential penalty function, J. Optim. Theory Appl., 2016, 168, 92-108. DOI: 10.1007/s10957-015-0735-7 |
[3] | Q. Hu and W. Wang, A filled function method based on filter for global optimization with box constraints, Operations Research Transactions, 2016, 20, 1-11. DOI: 10.15960/j.cnki.issn.1007-6093.2016.03.006 |
[4] | S. J. Lian, B. Z. Liu and L. S. Zhang, A family of penalty functions approximate to l1 exact penalty function, Acta Mathmaticae Applicatae Sinica., 2007, 30, 961-971. DOI: 10.3321/j.issn:0254-3079.2007.06.001 |
[5] | S. J. Lian, and L. S. Zhang, A simple smooth exact penalty function for smooth optimization problem, J. Syst. Sci. Complex., 2012, 25, 521-528. DOI: 10.1007/s11424-012-9226-1 |
[6] | S. J. Lian, J. H. Tang and A. H. Du, A new class of penalty functions for quality constrained smooth optimization, Operations Research Transactions, 2018, 22, 108-116. DOI: 10.15960/j.cnki.issn.1007-6093.2018.04. |
[7] | S. J. Lian, A. H. Du and J. H. Tang, A new class of simple smooth exact penalty functions for quality constrained optimization problems, Operations Research Transactions, 2017, 21, 33-43. DOI: 10.15960/j.cnki.issn.1007-6093.2017.01.004 |
[8] | S. J. Lian, Smoothing approximation to l1 exact penalty function for inequality constrained optimization, Applied Mathematics and Computation, 2012, 219, 3113-3121. DOI: 10.1016/j.amc.2012.09.042 |
[9] | S. J. Lian, and Y. Q. Duan, Smoothing of the lower-order exact penalty function for inquality constrained optimization, Journal of Inequalities and Applications, 2016, 2016, 1-12. DOI: 10.1186/s13660-016-1126-9 |
[10] | L. Y. Li, Z. Y. Wu and Q. Long, A new objective penalty function approach for solving constrained minimax problems, J. Oper. Res. Soc. China., 2014, 2, 93-108. DOI: 10.1007/s40305-014-0041-3 |
[11] | S. Lucidi and V. Piccialli, New class of globally convexized filled functions for global optimization, J. Glob. Optim., 2002, 24, 219-236. DOI: 10.1023/A:1020243720794 |
[12] | Z. Q. Meng, R. Shen, C. Y. Dang and M. Jiang, A barrier objective penalty function algorithm for mathematical programming, Journal of System and Mathematical Science(Chinese Series), 2016, 36, 75-92. |
[13] | Z. Q. Meng, R. Shen, C. Y. Dang and M. Jiang, Augmented Lagrangian objective penalty function, Numer. Func. Anal. Optim., 2015, 36, 1471-1492. doi: 10.1080/01630563.2015.1070864 |
[14] | Z. Q. Meng, Q. Y. Hu, C. Y. Dang and X. Q. Yang, An objective penalty function method for nonlinear programming, Appl. Math. Lett., 2004, 17, 683-689. DOI: 10.1016/S0893-9659(04)90105-X |
[15] | Z. Q. Meng, C. Y. Dang, M. Jiang, X. S. Xu and R. Shen, Exaceness and algorithm of an objective penalty function, J. Glob. Optim., 2013, 56, 691-711. DOI: 10.1007/s10898-012-9900-9 |
[16] | G. Di Pillo, S. Lucidi and F. Rinaldi, An approach to constrained global optimization based on exact penalty functions, J. Glob. Optim., 2012, 54, 251-260. DOI: 10.1007/s10898-010-9582-0 |
[17] | G. Di Pillo, S. Lucidi and F. Rinaldi, A derivative-free algorithm for constrained global optimization based on exact penalty functions, J. Optim. Theory Appl., 2015, 164, 862-882. DOI: 10.1007/s10957-013-0487-1 |
[18] | J. H. Tang, W. Wang and Y. F. Xu, Two classes of smooth objective penalty functions for constrained problem, Numerical Functional Analysis and Optimization, 2019, 40, 341-364. DOI: 10.1080/01630563.2018.1554586 |
[19] | J. H. Tang, W. Wang and Y. F. Xu, Lower-order Smoothed Objective Penalty Functions Based on Filling Properties for Constrained Optimization Problems, Optimization, 2022, 71, 1579-1601. DOI: 10.1080/02331934.2020.1818746 |
[20] | W. X. Wang, Y. L. Shang and L. S. Zhang, A new T-F function theory and algorithm for nonlinear integer programming, The First International Symposium on Optimization and Systems Biology(OSB'07), 2007, 382-390. |
[21] | W. Wang, Y. J. Yang and L. S. Zhang, Unification of filled function and tunnelling function in global optimization, Acta Mathematicae Applicatae Sinica, English Series, 2007, 23, 59-66. doi: 10.1007/s10255-006-0349-9 |
[22] | W. Wang, Q. Yuan and J. H. Tang, Dimensionality reduction algorithm for global optimization problems with closed box constraints Mathematical Modeling and Its Applications, 2019, 8, 38-43. DOI: 10.3969/j.issn.2095-3070.2019.01.005 |
[23] | H. X. Wu and H. Z. Luo, Saddle points of general augmented Lagrangians for constrained nonconvex optimization, J. Glob. Optim., 2012, 53, 683-697. DOI: 10.1007/s10898-011-9731-0 |
[24] | W. I. Zangwill, Non-linear programming via penalty functions, Manage. Sci., 1967, 13, 44-358. |
[25] | Y. Zheng, Z. Q. Meng and R. Shen, An M-Objective penalty function algorithm under big penalty parameters, J. Syst. Sci. Complex., 2016, 2, 455-471. |
[26] | Y. Zheng and Z. Q. Meng A New Augmented Lagrangian Objective Penalty Function for Constrained Optimization Problems, Open Journal of Optimization, 2017, 6, 39-46. DOI: 10.4236/ojop.2017.62004 |