2023 Volume 13 Issue 2
Article Contents

Jiahui Tang, Yifan Xu, Wei Wang. A FILLED PENALTY FUNCTION METHOD FOR SOLVING CONSTRAINED OPTIMIZATION PROBLEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 809-825. doi: 10.11948/20220125
Citation: Jiahui Tang, Yifan Xu, Wei Wang. A FILLED PENALTY FUNCTION METHOD FOR SOLVING CONSTRAINED OPTIMIZATION PROBLEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 809-825. doi: 10.11948/20220125

A FILLED PENALTY FUNCTION METHOD FOR SOLVING CONSTRAINED OPTIMIZATION PROBLEMS

  • Corresponding author: Email address: tangjiahui0612@163.com(J. Tang) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China(72072036)
  • An important method to solve constrained optimization problem is to approach the optimal solution of constrained optimization problem gradually by sequential unconstrained optimization method, namely penalty function method. And the filling function method is one of the effective methods to solve the global optimal problem. In this paper, a class of augmented Lagrangian objective filled penalty functions are defined to solve non-convex constraint optimization problems, the authors call it filled penalty function method. The theoretical properties of these functions, such as exactness, smoothness, global convergence, are discussed. On this basis, a local optimization algorithm and an approximate global optimization algorithm with corresponding examples are given for solving constrained optimization problems.

    MSC: 90C30
  • 加载中
  • [1] T. Antczak, Exactness of penalization for exact minimax penalty function method in nonconvex programming, Appl. Math. Mech. -Engl. Ed., 2015, 36, 541-556. DOI: 10.1007/s10483-015-1929-9

    CrossRef Google Scholar

    [2] N. Echebest, M. D. Sanchez and M. L. Schuverdt, Convergence results of an augmented Lagrangian method using the exponential penalty function, J. Optim. Theory Appl., 2016, 168, 92-108. DOI: 10.1007/s10957-015-0735-7

    CrossRef Google Scholar

    [3] Q. Hu and W. Wang, A filled function method based on filter for global optimization with box constraints, Operations Research Transactions, 2016, 20, 1-11. DOI: 10.15960/j.cnki.issn.1007-6093.2016.03.006

    CrossRef Google Scholar

    [4] S. J. Lian, B. Z. Liu and L. S. Zhang, A family of penalty functions approximate to l1 exact penalty function, Acta Mathmaticae Applicatae Sinica., 2007, 30, 961-971. DOI: 10.3321/j.issn:0254-3079.2007.06.001

    CrossRef Google Scholar

    [5] S. J. Lian, and L. S. Zhang, A simple smooth exact penalty function for smooth optimization problem, J. Syst. Sci. Complex., 2012, 25, 521-528. DOI: 10.1007/s11424-012-9226-1

    CrossRef Google Scholar

    [6] S. J. Lian, J. H. Tang and A. H. Du, A new class of penalty functions for quality constrained smooth optimization, Operations Research Transactions, 2018, 22, 108-116. DOI: 10.15960/j.cnki.issn.1007-6093.2018.04.

    CrossRef Google Scholar

    [7] S. J. Lian, A. H. Du and J. H. Tang, A new class of simple smooth exact penalty functions for quality constrained optimization problems, Operations Research Transactions, 2017, 21, 33-43. DOI: 10.15960/j.cnki.issn.1007-6093.2017.01.004

    CrossRef Google Scholar

    [8] S. J. Lian, Smoothing approximation to l1 exact penalty function for inequality constrained optimization, Applied Mathematics and Computation, 2012, 219, 3113-3121. DOI: 10.1016/j.amc.2012.09.042

    CrossRef Google Scholar

    [9] S. J. Lian, and Y. Q. Duan, Smoothing of the lower-order exact penalty function for inquality constrained optimization, Journal of Inequalities and Applications, 2016, 2016, 1-12. DOI: 10.1186/s13660-016-1126-9

    CrossRef Google Scholar

    [10] L. Y. Li, Z. Y. Wu and Q. Long, A new objective penalty function approach for solving constrained minimax problems, J. Oper. Res. Soc. China., 2014, 2, 93-108. DOI: 10.1007/s40305-014-0041-3

    CrossRef Google Scholar

    [11] S. Lucidi and V. Piccialli, New class of globally convexized filled functions for global optimization, J. Glob. Optim., 2002, 24, 219-236. DOI: 10.1023/A:1020243720794

    CrossRef Google Scholar

    [12] Z. Q. Meng, R. Shen, C. Y. Dang and M. Jiang, A barrier objective penalty function algorithm for mathematical programming, Journal of System and Mathematical Science(Chinese Series), 2016, 36, 75-92.

    Google Scholar

    [13] Z. Q. Meng, R. Shen, C. Y. Dang and M. Jiang, Augmented Lagrangian objective penalty function, Numer. Func. Anal. Optim., 2015, 36, 1471-1492. doi: 10.1080/01630563.2015.1070864

    CrossRef Google Scholar

    [14] Z. Q. Meng, Q. Y. Hu, C. Y. Dang and X. Q. Yang, An objective penalty function method for nonlinear programming, Appl. Math. Lett., 2004, 17, 683-689. DOI: 10.1016/S0893-9659(04)90105-X

    CrossRef Google Scholar

    [15] Z. Q. Meng, C. Y. Dang, M. Jiang, X. S. Xu and R. Shen, Exaceness and algorithm of an objective penalty function, J. Glob. Optim., 2013, 56, 691-711. DOI: 10.1007/s10898-012-9900-9

    CrossRef Google Scholar

    [16] G. Di Pillo, S. Lucidi and F. Rinaldi, An approach to constrained global optimization based on exact penalty functions, J. Glob. Optim., 2012, 54, 251-260. DOI: 10.1007/s10898-010-9582-0

    CrossRef Google Scholar

    [17] G. Di Pillo, S. Lucidi and F. Rinaldi, A derivative-free algorithm for constrained global optimization based on exact penalty functions, J. Optim. Theory Appl., 2015, 164, 862-882. DOI: 10.1007/s10957-013-0487-1

    CrossRef Google Scholar

    [18] J. H. Tang, W. Wang and Y. F. Xu, Two classes of smooth objective penalty functions for constrained problem, Numerical Functional Analysis and Optimization, 2019, 40, 341-364. DOI: 10.1080/01630563.2018.1554586

    CrossRef Google Scholar

    [19] J. H. Tang, W. Wang and Y. F. Xu, Lower-order Smoothed Objective Penalty Functions Based on Filling Properties for Constrained Optimization Problems, Optimization, 2022, 71, 1579-1601. DOI: 10.1080/02331934.2020.1818746

    CrossRef Google Scholar

    [20] W. X. Wang, Y. L. Shang and L. S. Zhang, A new T-F function theory and algorithm for nonlinear integer programming, The First International Symposium on Optimization and Systems Biology(OSB'07), 2007, 382-390.

    Google Scholar

    [21] W. Wang, Y. J. Yang and L. S. Zhang, Unification of filled function and tunnelling function in global optimization, Acta Mathematicae Applicatae Sinica, English Series, 2007, 23, 59-66. doi: 10.1007/s10255-006-0349-9

    CrossRef Google Scholar

    [22] W. Wang, Q. Yuan and J. H. Tang, Dimensionality reduction algorithm for global optimization problems with closed box constraints Mathematical Modeling and Its Applications, 2019, 8, 38-43. DOI: 10.3969/j.issn.2095-3070.2019.01.005

    CrossRef Google Scholar

    [23] H. X. Wu and H. Z. Luo, Saddle points of general augmented Lagrangians for constrained nonconvex optimization, J. Glob. Optim., 2012, 53, 683-697. DOI: 10.1007/s10898-011-9731-0

    CrossRef Google Scholar

    [24] W. I. Zangwill, Non-linear programming via penalty functions, Manage. Sci., 1967, 13, 44-358.

    Google Scholar

    [25] Y. Zheng, Z. Q. Meng and R. Shen, An M-Objective penalty function algorithm under big penalty parameters, J. Syst. Sci. Complex., 2016, 2, 455-471.

    Google Scholar

    [26] Y. Zheng and Z. Q. Meng A New Augmented Lagrangian Objective Penalty Function for Constrained Optimization Problems, Open Journal of Optimization, 2017, 6, 39-46. DOI: 10.4236/ojop.2017.62004

    CrossRef Google Scholar

Tables(5)

Article Metrics

Article views(2673) PDF downloads(524) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint