Citation: | Xin-You Meng, Chong-Yang Yin. DYNAMICS OF A DENGUE FEVER MODEL WITH UNREPORTED CASES AND ASYMPTOMATIC INFECTED CLASSES IN SINGAPORE, 2020[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 782-808. doi: 10.11948/20220111 |
This study is devoted to consider a novel model of dengue fever with unreported cases and asymptomatic infected classes, where infected humans is admitted to general and intensive hospitals for treatment. First, the basic reproduction number is calculated by using the next generation matrix method. The disease-free equilibrium is locally asymptotically stable when the basic reproduction number is less than one, but forward bifurcation occurs at the disease-free equilibrium when the basic reproduction number equals one. Then, the endemic equilibrium is consistent persistence when the basic reproduction number is more than one. Next, the existence of the optimal control pair is analyzed, and the mathematical expression of the optimal control is given by using Pontriagin's maximum principle. Finally, based on the dengue fever data in Singapore during the 15-52 weeks of 2020, the best fitting parameters of the model are determined by using Markov Chain Monte Carlo algorithm. The basic reproduction number is 1.6015 (95%CI: (1.5425-1.6675)). Numerical simulation and sensitivity analysis of several parameters are carried out. It is suggested that patients with dengue fever should report and receive treatment in time, which is of great significance for prevention and control of dengue fever.
[1] | B. Adams and M. Boots, How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model, Epidemics-Neth, 2010, 2(1), 1-10. doi: 10.1016/j.epidem.2010.01.001 |
[2] | L. Cai, S. Guo, X. Li et al., Global dynamics of a dengue epidemic mathematical model, Chaos Soliton. Fract., 2009, 42(4), 2297-2304. doi: 10.1016/j.chaos.2009.03.130 |
[3] | C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 2004, 1(2), 361-401. doi: 10.3934/mbe.2004.1.361 |
[4] | M. L. Chambers, The mathematical theory of optimal processes, J. Operat. Res. Soc., 1965, 16(4), 493-494. doi: 10.1057/jors.1965.92 |
[5] | M. Chan and M. A. Johansson, The incubation periods of dengue viruses, Plos One, 2012, 7(11), e50972. doi: 10.1371/journal.pone.0050972 |
[6] | S. Chen and M. H. Hsieh, Modeling the transmission dynamics of dengue fever: Implications of temperature effects, Sci. Total. Environ., 2012, 431, 385-391. doi: 10.1016/j.scitotenv.2012.05.012 |
[7] | A. Coetero, J. D. Edman, G. G. Clark and T. W. Scott, Life table study of Aedes aegypti (Diptera: Culicidae) in Puerto Rico fed only human blood versus blood plus sugar, J. Med. Entomol., 1998, 35(5), 809-813. doi: 10.1093/jmedent/35.5.809 |
[8] | L. Esteva and C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci., 1998, 150(2), 131-151. doi: 10.1016/S0025-5564(98)10003-2 |
[9] | W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, New York, 1975. |
[10] | F. Florence, C. Romuald, G. Pascal et al., Aedes aegypti survival and dengue transmission patterns in French Guiana, J. Vect. Ecol., 2006, 31(2), 390-399. doi: 10.3376/1081-1710(2006)31[390:AASADT]2.0.CO;2 |
[11] | W. Garira and D. Mathebula, A coupled multiscale model to guide malaria control and elimination, J. Theor. Biol., 2019, 475, 34-59. doi: 10.1016/j.jtbi.2019.05.011 |
[12] | J. Ge, Z. Lin and H. Zhu, Modeling the spread of West Nile virus in a spatially heterogeneous and advective environment, J. Appl. Anal. Comput., 2021, 11(4), 1868-1897. |
[13] | H. Haario, M. Laine, A. Mira et al., Dram: Efficient adaptive mcmc, Stat. Comput., 2006, 16(4), 339-354. doi: 10.1007/s11222-006-9438-0 |
[14] | M. Huang, L. Hu and B. Zheng, Comparing the efficiency of wolbachia driven aedes mosquito suppression strategies, J. Appl. Anal. Comput., 2019, 9(1), 211-230. |
[15] | H. Huo, K. Cao and H. Xiang, Modelling the effects of the vaccination on seasonal influenza in Gansu, China, J. Appl. Anal. Comput., 2022, 12(1), 407-435. |
[16] | S. Jing, H. Huo and H. Xiang, Modeling the effects of meteorological factors and unreported cases on seasonal influenza outbreaks in Gansu Province, China, Bull. Math. Biol., 2020, 82(6), 1-36. |
[17] | S. Jing, H. Huo and H. Xiang, Modelling the effects of ozone concentration and pulse vaccination on seasonal influenza outbreaks in Gansu Province, China, Discrete Cont. Dyn-B., 2021, 27(4), 1877-1911. |
[18] | A. Khan, M. Hassan and M. Imran, Estimating the basic reproduction number for single-strain dengue fever epidemics, Infect. Dis. Poverty, 2014, 3(1), 12-29. doi: 10.1186/2049-9957-3-12 |
[19] | R. M. Lana, T. G. S. Carneiro, N. A. Honš®rio et al., Seasonal and nonseasonal dynamics of aedes aegypti in rio de janeiro, Brazil: Fitting mathematical models to trap data, Acta Trop., 2014, 129(1), 25-32. |
[20] | S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, CRC Press Chapman, Boca Raton, 2007. |
[21] | M. Li, G. Sun, Y. Laith et al., The driving force for 2014 dengue outbreak in guangdong, China, Plos One, 2016, 11(11), e0166211. doi: 10.1371/journal.pone.0166211 |
[22] | Y. Lou and X. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 2011, 62(4), 543-568. doi: 10.1007/s00285-010-0346-8 |
[23] | P. Magal and G. Webb, The parameter identification problem for SIR epidemic models: Identifying unreported cases, J. Math. Biol., 2018, 77(10), 1-20. |
[24] | S. Marino, I. B. Hogue and C. J. Ray, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 2008, 254(1), 178-196. doi: 10.1016/j.jtbi.2008.04.011 |
[25] | X. Meng and J. Li, Dynamical behavior of a delayed prey-predator-scavenger system with fear effect and linear harvesting, Int. J. Biomath., 2021, 14(4), 2150024. doi: 10.1142/S1793524521500248 |
[26] | X. Meng, N. Qin and H. Huo, Dynamics of a food chain model with two infected predators, Int. J. Bifurcat. Chaos, 2021, 31(2), 2150019. doi: 10.1142/S021812742150019X |
[27] | S. S. Musa, S. Zhao, H. Chan et al., A mathematical model to study the 2014-2015 large-scale dengue epidemics in Kaohsiung and Tainan cities in Taiwan, China, Math. Biosci. Eng., 2019, 16(5), 3841-3863. doi: 10.3934/mbe.2019190 |
[28] | K. Okuneye and A. B. Gumel, Analysis of a temperature and rainfall-dependent model for malaria transmission dynamics, Math. Bioe., 2016, 287, 72-92. |
[29] | J. L. Putnam and T. W. Scott, Blood-feeding behavior of dengue-2 virus-infected aedes aegypti, Am. J. Trop. Med. Hyg., 1995, 52(3), 225-227. doi: 10.4269/ajtmh.1995.52.225 |
[30] | J. G. Rigau-Pérez, G. G. Clark, D. J. Gubler et al., Dengue and dengue haemorrhagic fever, Lancet, 1995, 70(9132), 971-977. |
[31] | C. Shekhar, Deadly dengue: New vaccines promise to tackle this escalating global menace, Chem. Biol., 2007, 14(8), 871-872. doi: 10.1016/j.chembiol.2007.08.004 |
[32] | E. Shim, Dengue dynamics and vaccine cost-effectiveness analysis in the Philippines, Am. J. Trop. Med. Hyg., 2016, 1137-1147. |
[33] | J. F. Siler, M. W. Hall and A. P. Hitchens, Dengue: Its history, epidemiology, mechanism of transmission, etiology, clinical manifestations, immunity, and prevention, Philipp. J. Crop. Sci., 1926, 29, 1-302. |
[34] | H. Silva and I. Silva, Influence of eggs quiescence period on the aedes aegypti (linnaeus, 1762) (diptera, culicidae) life cycle at laboratory conditions, Rev. Soc. Bras. Med. Tro., 1999, 32(4), 349-355. doi: 10.1590/S0037-86821999000400003 |
[35] | A. K. Srivastav and M. Ghosh, Assessing the impact of treatment on the dynamics of dengue fever: A case study of India, Appl. Math. Comput., 2019, 362, 124-533. |
[36] | B. Tang, X. Huo, Y. Xiao et al., A conceptual model for optimizing vaccine coverage to reduce vector-borne infections in the presence of antibody-dependent enhancement, Theor. Biol. Med. Model., 2018, 15(1), 13-32. |
[37] | P. Van den Dreessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 2002, 180(1-2), 29-48. doi: 10.1016/S0025-5564(02)00108-6 |
[38] | K. S. Vannice, A. Durbin and J. Hombach, Status of vaccine research and development of vaccines for dengue, Vaccine, 2016, 34(26), 2934-2938. doi: 10.1016/j.vaccine.2015.12.073 |
[39] |
Weekly Infectious Diseases Bulletin, |
[40] | W. Wang and X. Zhao, An epidemic model in a patchy environment, Math. Biosci., 2004, 190(1), 97-112. doi: 10.1016/j.mbs.2002.11.001 |
[41] | W. Wang and X. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 2011, 71(1), 147-168. doi: 10.1137/090775890 |
[42] | L. Xue, X. Ren, F. Magpantay et al., Optimal control of mitigation strategies for dengue virus transmission, Bull. Math. Biol., 2021, 83(2), s11538. |
[43] | L. Xue, H. Zhang, W. Sun et al., Transmission dynamics of multi-strain dengue virus with cross-immunity, Appl. Math. Comput., 2021, 392, 125742. |
[44] | H. Yang and C. P. Ferreira, Assessing the effects of vector control on dengue transmission, Appl. Math. Comput., 2008, 198(1), 401-413. |
[45] | H. Zhang and R. Lui, Releasing Wolbachia-infected Aedes aegypti to prevent the spread of dengue virus: A mathematical study, Infect. Dis. Model., 2020, 5, 142-160. |
[46] | S. Zhao, L. Stone, D. Gao et al., Modelling the large-scale yellow fever outbreak in Luanda, Angola, and the impact of vaccination, PLoS Neglect Trop. D., 2018, 12, e0006158. |
[47] | X. Zhao, Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications, Can. Appl. Math. Quart., 1995, 3(3), 473-495. |
[48] | X. Zhao, Dynamical Systems in Population Biology, Springer, Switzerland, 2017. |
[49] | B. Zheng, L. Chen and Q. Sun, Analyzing the control of dengue by releasing wolbachia-infected male mosquitoes through a delay differential equation model, Math. Biosci. Eng., 2019, 16(5), 5531-5550. |
[50] | T. Zheng and L. Nie, Modelling the transmission dynamics of two-strain dengue in the presence awareness and vector control, J. Theor. Biol., 2018, 443, 82-91. |
[51] | G. Zhu, T. Liu, J. Xiao et al., Effects of human mobility, temperature and mosquito control on the spatiotemporal transmission of dengue. , Sci. Total. Environ., 2018, 651(1), 969-978. |
Transfer diagram for the model (2.1).
Disease free equilibrium
Forward bifurcation diagram taking one parameter
The influence of
The influence of each parameter on
The actual number of people infected in Singapore from 15 to 52 weeks in 2020 years.
Sample values of
The Partial Rank Correlation Coefficients of
The influence of partial parameter variation on
Number of people in different compartment with