2023 Volume 13 Issue 2
Article Contents

Xin-You Meng, Chong-Yang Yin. DYNAMICS OF A DENGUE FEVER MODEL WITH UNREPORTED CASES AND ASYMPTOMATIC INFECTED CLASSES IN SINGAPORE, 2020[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 782-808. doi: 10.11948/20220111
Citation: Xin-You Meng, Chong-Yang Yin. DYNAMICS OF A DENGUE FEVER MODEL WITH UNREPORTED CASES AND ASYMPTOMATIC INFECTED CLASSES IN SINGAPORE, 2020[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 782-808. doi: 10.11948/20220111

DYNAMICS OF A DENGUE FEVER MODEL WITH UNREPORTED CASES AND ASYMPTOMATIC INFECTED CLASSES IN SINGAPORE, 2020

  • Corresponding author: Email address: xymeng@lut.edu.cn(X. Meng) 
  • Fund Project: This work is supported by the National Natural Science Foundation of China (Nos. 12161054, 11661050 and 11861044), the National Natural Science Foundation of Gansu Province (No. 20JR10RA156), and the HongLiu First-class Disciplines Development Program of Lanzhou University of Technology
  • This study is devoted to consider a novel model of dengue fever with unreported cases and asymptomatic infected classes, where infected humans is admitted to general and intensive hospitals for treatment. First, the basic reproduction number is calculated by using the next generation matrix method. The disease-free equilibrium is locally asymptotically stable when the basic reproduction number is less than one, but forward bifurcation occurs at the disease-free equilibrium when the basic reproduction number equals one. Then, the endemic equilibrium is consistent persistence when the basic reproduction number is more than one. Next, the existence of the optimal control pair is analyzed, and the mathematical expression of the optimal control is given by using Pontriagin's maximum principle. Finally, based on the dengue fever data in Singapore during the 15-52 weeks of 2020, the best fitting parameters of the model are determined by using Markov Chain Monte Carlo algorithm. The basic reproduction number is 1.6015 (95%CI: (1.5425-1.6675)). Numerical simulation and sensitivity analysis of several parameters are carried out. It is suggested that patients with dengue fever should report and receive treatment in time, which is of great significance for prevention and control of dengue fever.

    MSC: 34D05, 34D20, 34D23, 49J15
  • 加载中
  • [1] B. Adams and M. Boots, How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model, Epidemics-Neth, 2010, 2(1), 1-10. doi: 10.1016/j.epidem.2010.01.001

    CrossRef Google Scholar

    [2] L. Cai, S. Guo, X. Li et al., Global dynamics of a dengue epidemic mathematical model, Chaos Soliton. Fract., 2009, 42(4), 2297-2304. doi: 10.1016/j.chaos.2009.03.130

    CrossRef Google Scholar

    [3] C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 2004, 1(2), 361-401. doi: 10.3934/mbe.2004.1.361

    CrossRef Google Scholar

    [4] M. L. Chambers, The mathematical theory of optimal processes, J. Operat. Res. Soc., 1965, 16(4), 493-494. doi: 10.1057/jors.1965.92

    CrossRef Google Scholar

    [5] M. Chan and M. A. Johansson, The incubation periods of dengue viruses, Plos One, 2012, 7(11), e50972. doi: 10.1371/journal.pone.0050972

    CrossRef Google Scholar

    [6] S. Chen and M. H. Hsieh, Modeling the transmission dynamics of dengue fever: Implications of temperature effects, Sci. Total. Environ., 2012, 431, 385-391. doi: 10.1016/j.scitotenv.2012.05.012

    CrossRef Google Scholar

    [7] A. Coetero, J. D. Edman, G. G. Clark and T. W. Scott, Life table study of Aedes aegypti (Diptera: Culicidae) in Puerto Rico fed only human blood versus blood plus sugar, J. Med. Entomol., 1998, 35(5), 809-813. doi: 10.1093/jmedent/35.5.809

    CrossRef Google Scholar

    [8] L. Esteva and C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci., 1998, 150(2), 131-151. doi: 10.1016/S0025-5564(98)10003-2

    CrossRef Google Scholar

    [9] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, New York, 1975.

    Google Scholar

    [10] F. Florence, C. Romuald, G. Pascal et al., Aedes aegypti survival and dengue transmission patterns in French Guiana, J. Vect. Ecol., 2006, 31(2), 390-399. doi: 10.3376/1081-1710(2006)31[390:AASADT]2.0.CO;2

    CrossRef Google Scholar

    [11] W. Garira and D. Mathebula, A coupled multiscale model to guide malaria control and elimination, J. Theor. Biol., 2019, 475, 34-59. doi: 10.1016/j.jtbi.2019.05.011

    CrossRef Google Scholar

    [12] J. Ge, Z. Lin and H. Zhu, Modeling the spread of West Nile virus in a spatially heterogeneous and advective environment, J. Appl. Anal. Comput., 2021, 11(4), 1868-1897.

    Google Scholar

    [13] H. Haario, M. Laine, A. Mira et al., Dram: Efficient adaptive mcmc, Stat. Comput., 2006, 16(4), 339-354. doi: 10.1007/s11222-006-9438-0

    CrossRef Google Scholar

    [14] M. Huang, L. Hu and B. Zheng, Comparing the efficiency of wolbachia driven aedes mosquito suppression strategies, J. Appl. Anal. Comput., 2019, 9(1), 211-230.

    Google Scholar

    [15] H. Huo, K. Cao and H. Xiang, Modelling the effects of the vaccination on seasonal influenza in Gansu, China, J. Appl. Anal. Comput., 2022, 12(1), 407-435.

    Google Scholar

    [16] S. Jing, H. Huo and H. Xiang, Modeling the effects of meteorological factors and unreported cases on seasonal influenza outbreaks in Gansu Province, China, Bull. Math. Biol., 2020, 82(6), 1-36.

    Google Scholar

    [17] S. Jing, H. Huo and H. Xiang, Modelling the effects of ozone concentration and pulse vaccination on seasonal influenza outbreaks in Gansu Province, China, Discrete Cont. Dyn-B., 2021, 27(4), 1877-1911.

    Google Scholar

    [18] A. Khan, M. Hassan and M. Imran, Estimating the basic reproduction number for single-strain dengue fever epidemics, Infect. Dis. Poverty, 2014, 3(1), 12-29. doi: 10.1186/2049-9957-3-12

    CrossRef Google Scholar

    [19] R. M. Lana, T. G. S. Carneiro, N. A. Honš®rio et al., Seasonal and nonseasonal dynamics of aedes aegypti in rio de janeiro, Brazil: Fitting mathematical models to trap data, Acta Trop., 2014, 129(1), 25-32.

    Google Scholar

    [20] S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, CRC Press Chapman, Boca Raton, 2007.

    Google Scholar

    [21] M. Li, G. Sun, Y. Laith et al., The driving force for 2014 dengue outbreak in guangdong, China, Plos One, 2016, 11(11), e0166211. doi: 10.1371/journal.pone.0166211

    CrossRef Google Scholar

    [22] Y. Lou and X. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 2011, 62(4), 543-568. doi: 10.1007/s00285-010-0346-8

    CrossRef Google Scholar

    [23] P. Magal and G. Webb, The parameter identification problem for SIR epidemic models: Identifying unreported cases, J. Math. Biol., 2018, 77(10), 1-20.

    Google Scholar

    [24] S. Marino, I. B. Hogue and C. J. Ray, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 2008, 254(1), 178-196. doi: 10.1016/j.jtbi.2008.04.011

    CrossRef Google Scholar

    [25] X. Meng and J. Li, Dynamical behavior of a delayed prey-predator-scavenger system with fear effect and linear harvesting, Int. J. Biomath., 2021, 14(4), 2150024. doi: 10.1142/S1793524521500248

    CrossRef Google Scholar

    [26] X. Meng, N. Qin and H. Huo, Dynamics of a food chain model with two infected predators, Int. J. Bifurcat. Chaos, 2021, 31(2), 2150019. doi: 10.1142/S021812742150019X

    CrossRef Google Scholar

    [27] S. S. Musa, S. Zhao, H. Chan et al., A mathematical model to study the 2014-2015 large-scale dengue epidemics in Kaohsiung and Tainan cities in Taiwan, China, Math. Biosci. Eng., 2019, 16(5), 3841-3863. doi: 10.3934/mbe.2019190

    CrossRef Google Scholar

    [28] K. Okuneye and A. B. Gumel, Analysis of a temperature and rainfall-dependent model for malaria transmission dynamics, Math. Bioe., 2016, 287, 72-92.

    Google Scholar

    [29] J. L. Putnam and T. W. Scott, Blood-feeding behavior of dengue-2 virus-infected aedes aegypti, Am. J. Trop. Med. Hyg., 1995, 52(3), 225-227. doi: 10.4269/ajtmh.1995.52.225

    CrossRef Google Scholar

    [30] J. G. Rigau-Pérez, G. G. Clark, D. J. Gubler et al., Dengue and dengue haemorrhagic fever, Lancet, 1995, 70(9132), 971-977.

    Google Scholar

    [31] C. Shekhar, Deadly dengue: New vaccines promise to tackle this escalating global menace, Chem. Biol., 2007, 14(8), 871-872. doi: 10.1016/j.chembiol.2007.08.004

    CrossRef Google Scholar

    [32] E. Shim, Dengue dynamics and vaccine cost-effectiveness analysis in the Philippines, Am. J. Trop. Med. Hyg., 2016, 1137-1147.

    Google Scholar

    [33] J. F. Siler, M. W. Hall and A. P. Hitchens, Dengue: Its history, epidemiology, mechanism of transmission, etiology, clinical manifestations, immunity, and prevention, Philipp. J. Crop. Sci., 1926, 29, 1-302.

    Google Scholar

    [34] H. Silva and I. Silva, Influence of eggs quiescence period on the aedes aegypti (linnaeus, 1762) (diptera, culicidae) life cycle at laboratory conditions, Rev. Soc. Bras. Med. Tro., 1999, 32(4), 349-355. doi: 10.1590/S0037-86821999000400003

    CrossRef Google Scholar

    [35] A. K. Srivastav and M. Ghosh, Assessing the impact of treatment on the dynamics of dengue fever: A case study of India, Appl. Math. Comput., 2019, 362, 124-533.

    Google Scholar

    [36] B. Tang, X. Huo, Y. Xiao et al., A conceptual model for optimizing vaccine coverage to reduce vector-borne infections in the presence of antibody-dependent enhancement, Theor. Biol. Med. Model., 2018, 15(1), 13-32.

    Google Scholar

    [37] P. Van den Dreessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 2002, 180(1-2), 29-48. doi: 10.1016/S0025-5564(02)00108-6

    CrossRef Google Scholar

    [38] K. S. Vannice, A. Durbin and J. Hombach, Status of vaccine research and development of vaccines for dengue, Vaccine, 2016, 34(26), 2934-2938. doi: 10.1016/j.vaccine.2015.12.073

    CrossRef Google Scholar

    [39] Weekly Infectious Diseases Bulletin, http:www.moh.gov.sg/content/moh_web/home/statistics/infectiousDiseasesStatistics/we ekly_infectiousdiseasesbulletin.html, January 2022.

    Google Scholar

    [40] W. Wang and X. Zhao, An epidemic model in a patchy environment, Math. Biosci., 2004, 190(1), 97-112. doi: 10.1016/j.mbs.2002.11.001

    CrossRef Google Scholar

    [41] W. Wang and X. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 2011, 71(1), 147-168. doi: 10.1137/090775890

    CrossRef Google Scholar

    [42] L. Xue, X. Ren, F. Magpantay et al., Optimal control of mitigation strategies for dengue virus transmission, Bull. Math. Biol., 2021, 83(2), s11538.

    Google Scholar

    [43] L. Xue, H. Zhang, W. Sun et al., Transmission dynamics of multi-strain dengue virus with cross-immunity, Appl. Math. Comput., 2021, 392, 125742.

    Google Scholar

    [44] H. Yang and C. P. Ferreira, Assessing the effects of vector control on dengue transmission, Appl. Math. Comput., 2008, 198(1), 401-413.

    Google Scholar

    [45] H. Zhang and R. Lui, Releasing Wolbachia-infected Aedes aegypti to prevent the spread of dengue virus: A mathematical study, Infect. Dis. Model., 2020, 5, 142-160.

    Google Scholar

    [46] S. Zhao, L. Stone, D. Gao et al., Modelling the large-scale yellow fever outbreak in Luanda, Angola, and the impact of vaccination, PLoS Neglect Trop. D., 2018, 12, e0006158.

    Google Scholar

    [47] X. Zhao, Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications, Can. Appl. Math. Quart., 1995, 3(3), 473-495.

    Google Scholar

    [48] X. Zhao, Dynamical Systems in Population Biology, Springer, Switzerland, 2017.

    Google Scholar

    [49] B. Zheng, L. Chen and Q. Sun, Analyzing the control of dengue by releasing wolbachia-infected male mosquitoes through a delay differential equation model, Math. Biosci. Eng., 2019, 16(5), 5531-5550.

    Google Scholar

    [50] T. Zheng and L. Nie, Modelling the transmission dynamics of two-strain dengue in the presence awareness and vector control, J. Theor. Biol., 2018, 443, 82-91.

    Google Scholar

    [51] G. Zhu, T. Liu, J. Xiao et al., Effects of human mobility, temperature and mosquito control on the spatiotemporal transmission of dengue. , Sci. Total. Environ., 2018, 651(1), 969-978.

    Google Scholar

Figures(10)  /  Tables(2)

Article Metrics

Article views(2012) PDF downloads(713) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint