2022 Volume 12 Issue 6
Article Contents

H. Dehestani, Y. Ordokhani. IMPROVEMENT OF THE SPECTRAL METHOD FOR SOLVING MULTI-TERM TIME-SPACE RIESZ-CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2600-2620. doi: 10.11948/20220146
Citation: H. Dehestani, Y. Ordokhani. IMPROVEMENT OF THE SPECTRAL METHOD FOR SOLVING MULTI-TERM TIME-SPACE RIESZ-CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2600-2620. doi: 10.11948/20220146

IMPROVEMENT OF THE SPECTRAL METHOD FOR SOLVING MULTI-TERM TIME-SPACE RIESZ-CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS

  • In this paper, we study the numerical solution of multi-term time-space Riesz-Caputo fractional differential equations with the help of shifted Vieta-Lucas polynomials. To get the desired purpose, we introduce a new method for obtaining the operational matrices. The constructed method for finding the matrices influence directly in the accuracy of the methodology. Thus, the combination of shifted Vieta-Lucas polynomials properties with the operational matrices has reduced the problem to a system of algebraic equations. The proposed approach provides the approximate solutions to the problem which are convergent to the exact solution. Finally, we represent the accuracy and efficiency of the methodology by examining some examples and presenting the results in the form of graphs and tables.

    MSC: 65M70, 35Q99
  • 加载中
  • [1] A. Abdon and B. Dumitru, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 2016, 20(2), 763-769. doi: 10.2298/TSCI160111018A

    CrossRef Google Scholar

    [2] P. Agarwal and A. El-Sayed, Vieta-Lucas polynomials for solving a fractional-order mathematical physics model, Adv. Differ. Equ., 2020, 2020(1), 1-18. doi: 10.1186/s13662-019-2438-0

    CrossRef Google Scholar

    [3] A. H. Bhrawy and M. A. Zaky, A method based on the Jacobi Tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 2015, 281, 876-895. doi: 10.1016/j.jcp.2014.10.060

    CrossRef Google Scholar

    [4] W. Bu, X. Liu, Y. Tang and J. Yang, Finite element multigrid method for multi-term time fractional advection diffusion equations, Int. J. Model. Simul. Sci. Comput., 2015, 6(01), 1540001. doi: 10.1142/S1793962315400012

    CrossRef Google Scholar

    [5] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer Science & Business Media, 2007.

    Google Scholar

    [6] M. Caputo, Linear models of dissipation whose q is almost frequency independent-Ⅱ, Geophys. J. Int., 1967, 13(5), 529-539. doi: 10.1111/j.1365-246X.1967.tb02303.x

    CrossRef Google Scholar

    [7] S. Chen, X. Jiang, F. Liu and I. Turner, High order unconditionally stable difference schemes for the Riesz space-fractional telegraph equation, J. Comput. Appl. Math., 2015, 278, 119-129. doi: 10.1016/j.cam.2014.09.028

    CrossRef Google Scholar

    [8] H. Dehestani and Y. Ordokhani, Developing the discretization method for fractal-fractional two-dimensional fredholm-volterra integro-differential equations, Math. Methods Appl. Sci., 2021.

    Google Scholar

    [9] H. Dehestani and Y. Ordokhani, Modification of numerical algorithm for space-time fractional partial differential equations including two types of fractional derivatives, Int. J. Comput. Math., 2022, (just-accepted), 1.

    Google Scholar

    [10] H. Dehestani, Y. Ordokhani and M. Razzaghi, Fractional-order Legendre-Laguerre functions and their applications in fractional partial differential equations, Appl. Math. Comput., 2018, 336, 433-453.

    Google Scholar

    [11] A. Elsaid, The variational iteration method for solving Riesz fractional partial differential equations, Comput. Math. Appl., 2010, 60(7), 1940-1947. doi: 10.1016/j.camwa.2010.07.027

    CrossRef Google Scholar

    [12] R. Erfanifar, K. Sayevand and H. Esmaeili, On modified two-step iterative method in the fractional sense: some applications in real world phenomena, Int. J. Comput. Math., 2020, 97(10), 2109-2141. doi: 10.1080/00207160.2019.1683547

    CrossRef Google Scholar

    [13] R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order, arXiv preprint arXiv: 0805.3823, 2008.

    Google Scholar

    [14] R. Gorenflo, F. Mainardi, D. Moretti et al., Discrete random walk models for space-time fractional diffusion, Chem. Phys., 2002, 284(1-2), 521-541. doi: 10.1016/S0301-0104(02)00714-0

    CrossRef Google Scholar

    [15] R. Gorenflo and A. Vivoli, Fully discrete random walks for space-time fractional diffusion equations, Signal Process., 2003, 83(11), 2411-2420. doi: 10.1016/S0165-1684(03)00193-2

    CrossRef Google Scholar

    [16] I. Gorial, Numerical methods for fractional reaction-dispersion equation with Riesz space fractional derivative, Eng. Tech. J, 2011, 29(4), 709-715.

    Google Scholar

    [17] M. Heydari, Z. Avazzadeh and M. Razzaghi, Vieta-Lucas polynomials for the coupled nonlinear variable-order fractional Ginzburg-Landau equations, Appl. Numer. Math., 2021, 165, 442-458. doi: 10.1016/j.apnum.2021.03.007

    CrossRef Google Scholar

    [18] R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 2000, 339(1), 1-77. doi: 10.1016/S0370-1573(00)00070-3

    CrossRef Google Scholar

    [19] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.

    Google Scholar

    [20] S. Samko, A. Kilbas and O. Marichev, Fractional integrals and derivatives theory and applications gordon and breach, new york, 1993, ISBN-10: 2881248640, 13, 978-2881248641.

    Google Scholar

    [21] K. Sayevand, N. Ghanbari and I. Masti, A robust computational framework for analyzing the Bloch-Torrey equation of fractional order, Comput. Appl. Math., 2021, 40(4), 1-21.

    Google Scholar

    [22] K. Sayevand and J. A. T. Machado, A survey on fractional asymptotic expansion method: a forgotten theory, Fract. Calc. Appl. Anal., 2019, 22(5), 1165-1176. doi: 10.1515/fca-2019-0062

    CrossRef Google Scholar

    [23] K. Sayevand, J. T. Machado and I. Masti, Analysis of dual Bernstein operators in the solution of the fractional convection-diffusion equation arising in underground water pollution, J. Comput. Appl. Math., 2022, 399, 113729. doi: 10.1016/j.cam.2021.113729

    CrossRef Google Scholar

    [24] X. Si, C. Wang, Y. Shen and L. Zheng, Numerical method to initial-boundary value problems for fractional partial differential equations with time-space variable coefficients, Appl. Math. Model., 2016, 40(7-8), 4397-4411.

    Google Scholar

    [25] V. E. Tarasov and G. M. Zaslavsky, Fractional dynamics of systems with long-range interaction, Commun. Nonlinear Sci. Numer. Simul., 2006, 11(8), 885-898.

    Google Scholar

    [26] W. Tian, H. Zhou and W. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput., 2015, 84(294), 1703-1727.

    Google Scholar

    [27] H. Ye, F. Liu, V. Anh and I. Turner, Maximum principle and numerical method for the multi-term time-space riesz-caputo fractional differential equations, Appl. Math. Comput., 2014, 227, 531-540.

    Google Scholar

    [28] G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 2002, 371(6), 461-580.

    Google Scholar

    [29] H. Zhang and F. Liu, The fundamental solutions of the space, space-time Riesz fractional partial differential equations with periodic conditions, Numer. Math., 2007, 16(2), 181.

    Google Scholar

    [30] Y. Zhang and H. Ding, Improved matrix transform method for the Riesz space fractional reaction dispersion equation, J. Comput. Appl. Math., 2014, 260, 266-280.

    Google Scholar

    [31] Y. Zhang and H. Ding, Numerical algorithm for the time-caputo and space-Riesz fractional diffusion equation, Commun. Appl. Math. Comput., 2020, 2(1), 57-72.

    Google Scholar

Figures(7)  /  Tables(5)

Article Metrics

Article views(2666) PDF downloads(471) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint