Citation: | Jiayin Du. ARNOLD-TYPE THEOREM ABOUT LOWER-DIMENSIONAL INVARIANT TORI IN GENERALIZED HAMILTONIAN SYSTEMS[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2621-2639. doi: 10.11948/20220236 |
In this paper, we consider the lower dimensional invariant tori for generalized Hamiltonian system. A so-called generalized Hamiltonian system is defined on a Poisson manifold which can be odd dimensional and structurally degenerate. The existence of quasi-periodic invariant tori for Hamiltonian with standard symplectic structure was first shown by Arnold [
[1] | V. I. Arnold, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Uspehi Mat. Nauk, 1963, 18(5), 13-40. |
[2] | V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk, 1963, 18(6), 91-192. |
[3] | J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Internat. Math. Res. Notices, 1994, 11, 475-497. |
[4] | L. Chierchia, Periodic solutions of the planetary N-body problem, XVⅡth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2014, 269-280. |
[5] | F. Cong and Y. Li, Existence of higher dimensional invariant tori for Hamiltonian systems, J. Math. Anal. Appl., 1998, 222(1), 255-267. doi: 10.1006/jmaa.1998.5939 |
[6] | R. de la Llave, Recent progress in classical mechanics, Mathematical physics, X(Leipzig, 1991), 3-19, Springer, Berlin, 1992. |
[7] | A. Delshams, M. Gonchenko and P. Gutiérrez, Exponentially small splitting of separatrices associated to 3D whiskered tori with cubic frequencies, Comm. Math. Phys., 2020, 378(3), 1931-1976. doi: 10.1007/s00220-020-03832-y |
[8] | L. H. Eliasson, Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1988, 15(1), 115-147. |
[9] | S. M. Graff, On the continuation of hyperbolic invariant tori for Hamiltonian systems, J. Differential Equations, 1974, 15, 1-69. doi: 10.1016/0022-0396(74)90086-2 |
[10] | Y. Han, Y. Li and Y. Yi, Degenerate lower-dimensional tori in Hamiltonian systems, J. Differential Equations, 2006, 227(2), 670-691. doi: 10.1016/j.jde.2006.02.006 |
[11] | Y. Han, Y. Li and Y. Yi, Invariant tori in Hamiltonian systems with high order proper degeneracy, Ann. Henri Poincaré, 2010, 10(8), 1419-1436. doi: 10.1007/s00023-010-0026-7 |
[12] | M. R. Herman, Exemples de flots hamiltoniens dont aucune perturbation en topologie $\mathbb{C}.\infty$ n'a d'orbites périodiques sur un ouvert de surfaces dénergies, C. R. Acad. Sci. Paris Sér. I Math., 1991, 312(13), 989-994. |
[13] | A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function, Dokl. Akad. Nauk SSSR (N.S. ), 1954, 98, 527-530. |
[14] | S. B. Kuksin, Hamiltonian perturbations of infinite dimensional linear systems with an imaginary spectrum, Funktsional. Anal. i Prilozhen., 1987, 21(3), 22-37. |
[15] | Y. Li and Y. Yi, Persistence of invariant tori in generalized Hamiltonian systems, Ergodic Theory Dynam. Systems, 2002, 22(4), 1233-1261. |
[16] | Y. Li and Y. Yi, Persistence of lower dimensional tori of general types in Hamiltonian systems, Trans. Amer. Math. Soc., 2005, 357(4), 1565-1600. |
[17] | B. Liu, W. Zhu and Y. Han, Persistence of lower-dimensional hyperbolic invariant tori for generalized Hamiltonian systems, J. Math. Anal. Appl., 2006, 322(1), 251-275. |
[18] | V. K. Melnikov, On certain cases of conservation of almost periodic motions with a small change of the Hamiltonian function, Dokl. Akad. Nauk SSSR, 1965, 165, 1245-1248. |
[19] | K. R. Meyer, Periodic solutions of the N-body problem, Lecture Notes in Mathematics, 1719, Springer-Verlag, Berlin, 1999. |
[20] | I. Mezić and S. Wiggins, On the integrability and perturbation of three-dimensional fluid flows with symmetry, J. Nonlinear Sci., 1994, 4(2), 157-194. |
[21] | J. Moser, On invariant curves of area-preserving mapping of an annulus, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. Ⅱ, 1962, 1962, 1-20. |
[22] | J. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann., 1967, 169, 136-176. |
[23] | J. Moser, Old and new applications of KAM theory, Hamiltonian systems with three or more degrees of freedom (S'Agaró, 1995), 184-192, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 533, Kluwer Acad. Publ., Dordrecht, 1999. |
[24] | I. O. Parasyuk, Preservation of multidimensional invariant tori of Hamiltonian systems, Ukrain. Mat. Zh., 1984, 36(4), 467-473. |
[25] | J. Pöschel, A lecture on the classical KAM theorem, Smooth ergodic theory and its applications (Seattle, WA, 1999), 707-732, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, 2001. |
[26] | W. Qian, Y. Li and X. Yang, Multiscale KAM theorem for Hamiltonian systems, J. Differential Equations, 2019, 266(1), 70-86. |
[27] | W. Qian, Y. Li and X. Yang, Melnikov's conditions in matrices, J. Dynam. Differential Equations, 2020, 32(4), 1779-1795. |
[28] | M. B. Sevryuk, Some problems in KAM theory: conditionally periodic motions in generic systems, Russian Math. Surveys, 1995, 50(2), 341-353. |
[29] | B. Sommer, A KAM theorem for the spatial lunar problem, Ph. D Thesis, 2003. |
[30] | C. E. Wayne, An introduction to KAM theory, Dynamical systems and probabilistic methods in partial differential equations (Berkeley, CA, 1994), 3-29, Lectures in Appl. Math., 31, Amer. Math. Soc., Providence, RI, 1996. |
[31] | L. Xu, Y. Li and Y. Yi, Lower-dimensional tori in multi-scale nearly integrable Hamiltonian systems, Ann. Henri Poincaré, 2017, 18(1), 53-83. |
[32] | L. Xu and Y. Yi, Lower dimension tori of general types in multi-scale Hamiltonian systems, Nonlinearity, 2019, 32(6), 2226-2245. |
[33] | J. C. Yoccoz, Travaux de Herman sur les tores invariants, Astérisque, 1992, 206, 311-344. |
[34] | J. You, Perturbations of lower-dimensional tori for Hamiltonian systems, J. Differential Equations, 1999, 152(1), 1-29. |
[35] | E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems. I and Ⅱ, Comm. Pure Appl. Math., 1975, 28, 91-140. |
[36] | X. Zhao and Y. Li, A moser theorem for multi-scale mappings, Discrete Contin. Dyn. Syst., 2022. DOI: 10.3934/dcds.2022037. |