2022 Volume 12 Issue 6
Article Contents

Jiayin Du. ARNOLD-TYPE THEOREM ABOUT LOWER-DIMENSIONAL INVARIANT TORI IN GENERALIZED HAMILTONIAN SYSTEMS[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2621-2639. doi: 10.11948/20220236
Citation: Jiayin Du. ARNOLD-TYPE THEOREM ABOUT LOWER-DIMENSIONAL INVARIANT TORI IN GENERALIZED HAMILTONIAN SYSTEMS[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2621-2639. doi: 10.11948/20220236

ARNOLD-TYPE THEOREM ABOUT LOWER-DIMENSIONAL INVARIANT TORI IN GENERALIZED HAMILTONIAN SYSTEMS

  • Author Bio: Email: dujy20@mails.jlu.edu.cn(J. Du)
  • In this paper, we consider the lower dimensional invariant tori for generalized Hamiltonian system. A so-called generalized Hamiltonian system is defined on a Poisson manifold which can be odd dimensional and structurally degenerate. The existence of quasi-periodic invariant tori for Hamiltonian with standard symplectic structure was first shown by Arnold [2] under a degeneracy-removing condition. We prove the persistence of lower dimensional tori for Hamiltonian with Poisson structure instead of standard symplectic structure, when the tangential and normal frequencies satisfy some certain conditions.

    MSC: 37J40, 70H08
  • 加载中
  • [1] V. I. Arnold, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Uspehi Mat. Nauk, 1963, 18(5), 13-40.

    Google Scholar

    [2] V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk, 1963, 18(6), 91-192.

    Google Scholar

    [3] J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Internat. Math. Res. Notices, 1994, 11, 475-497.

    Google Scholar

    [4] L. Chierchia, Periodic solutions of the planetary N-body problem, XVⅡth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2014, 269-280.

    Google Scholar

    [5] F. Cong and Y. Li, Existence of higher dimensional invariant tori for Hamiltonian systems, J. Math. Anal. Appl., 1998, 222(1), 255-267. doi: 10.1006/jmaa.1998.5939

    CrossRef Google Scholar

    [6] R. de la Llave, Recent progress in classical mechanics, Mathematical physics, X(Leipzig, 1991), 3-19, Springer, Berlin, 1992.

    Google Scholar

    [7] A. Delshams, M. Gonchenko and P. Gutiérrez, Exponentially small splitting of separatrices associated to 3D whiskered tori with cubic frequencies, Comm. Math. Phys., 2020, 378(3), 1931-1976. doi: 10.1007/s00220-020-03832-y

    CrossRef Google Scholar

    [8] L. H. Eliasson, Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1988, 15(1), 115-147.

    Google Scholar

    [9] S. M. Graff, On the continuation of hyperbolic invariant tori for Hamiltonian systems, J. Differential Equations, 1974, 15, 1-69. doi: 10.1016/0022-0396(74)90086-2

    CrossRef Google Scholar

    [10] Y. Han, Y. Li and Y. Yi, Degenerate lower-dimensional tori in Hamiltonian systems, J. Differential Equations, 2006, 227(2), 670-691. doi: 10.1016/j.jde.2006.02.006

    CrossRef Google Scholar

    [11] Y. Han, Y. Li and Y. Yi, Invariant tori in Hamiltonian systems with high order proper degeneracy, Ann. Henri Poincaré, 2010, 10(8), 1419-1436. doi: 10.1007/s00023-010-0026-7

    CrossRef Google Scholar

    [12] M. R. Herman, Exemples de flots hamiltoniens dont aucune perturbation en topologie $\mathbb{C}.\infty$ n'a d'orbites périodiques sur un ouvert de surfaces dénergies, C. R. Acad. Sci. Paris Sér. I Math., 1991, 312(13), 989-994.

    $\mathbb{C}.\infty$ n'a d'orbites périodiques sur un ouvert de surfaces dénergies" target="_blank">Google Scholar

    [13] A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function, Dokl. Akad. Nauk SSSR (N.S. ), 1954, 98, 527-530.

    Google Scholar

    [14] S. B. Kuksin, Hamiltonian perturbations of infinite dimensional linear systems with an imaginary spectrum, Funktsional. Anal. i Prilozhen., 1987, 21(3), 22-37.

    Google Scholar

    [15] Y. Li and Y. Yi, Persistence of invariant tori in generalized Hamiltonian systems, Ergodic Theory Dynam. Systems, 2002, 22(4), 1233-1261.

    Google Scholar

    [16] Y. Li and Y. Yi, Persistence of lower dimensional tori of general types in Hamiltonian systems, Trans. Amer. Math. Soc., 2005, 357(4), 1565-1600.

    Google Scholar

    [17] B. Liu, W. Zhu and Y. Han, Persistence of lower-dimensional hyperbolic invariant tori for generalized Hamiltonian systems, J. Math. Anal. Appl., 2006, 322(1), 251-275.

    Google Scholar

    [18] V. K. Melnikov, On certain cases of conservation of almost periodic motions with a small change of the Hamiltonian function, Dokl. Akad. Nauk SSSR, 1965, 165, 1245-1248.

    Google Scholar

    [19] K. R. Meyer, Periodic solutions of the N-body problem, Lecture Notes in Mathematics, 1719, Springer-Verlag, Berlin, 1999.

    Google Scholar

    [20] I. Mezić and S. Wiggins, On the integrability and perturbation of three-dimensional fluid flows with symmetry, J. Nonlinear Sci., 1994, 4(2), 157-194.

    Google Scholar

    [21] J. Moser, On invariant curves of area-preserving mapping of an annulus, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. Ⅱ, 1962, 1962, 1-20.

    Google Scholar

    [22] J. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann., 1967, 169, 136-176.

    Google Scholar

    [23] J. Moser, Old and new applications of KAM theory, Hamiltonian systems with three or more degrees of freedom (S'Agaró, 1995), 184-192, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 533, Kluwer Acad. Publ., Dordrecht, 1999.

    Google Scholar

    [24] I. O. Parasyuk, Preservation of multidimensional invariant tori of Hamiltonian systems, Ukrain. Mat. Zh., 1984, 36(4), 467-473.

    Google Scholar

    [25] J. Pöschel, A lecture on the classical KAM theorem, Smooth ergodic theory and its applications (Seattle, WA, 1999), 707-732, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, 2001.

    Google Scholar

    [26] W. Qian, Y. Li and X. Yang, Multiscale KAM theorem for Hamiltonian systems, J. Differential Equations, 2019, 266(1), 70-86.

    Google Scholar

    [27] W. Qian, Y. Li and X. Yang, Melnikov's conditions in matrices, J. Dynam. Differential Equations, 2020, 32(4), 1779-1795.

    Google Scholar

    [28] M. B. Sevryuk, Some problems in KAM theory: conditionally periodic motions in generic systems, Russian Math. Surveys, 1995, 50(2), 341-353.

    Google Scholar

    [29] B. Sommer, A KAM theorem for the spatial lunar problem, Ph. D Thesis, 2003.

    Google Scholar

    [30] C. E. Wayne, An introduction to KAM theory, Dynamical systems and probabilistic methods in partial differential equations (Berkeley, CA, 1994), 3-29, Lectures in Appl. Math., 31, Amer. Math. Soc., Providence, RI, 1996.

    Google Scholar

    [31] L. Xu, Y. Li and Y. Yi, Lower-dimensional tori in multi-scale nearly integrable Hamiltonian systems, Ann. Henri Poincaré, 2017, 18(1), 53-83.

    Google Scholar

    [32] L. Xu and Y. Yi, Lower dimension tori of general types in multi-scale Hamiltonian systems, Nonlinearity, 2019, 32(6), 2226-2245.

    Google Scholar

    [33] J. C. Yoccoz, Travaux de Herman sur les tores invariants, Astérisque, 1992, 206, 311-344.

    Google Scholar

    [34] J. You, Perturbations of lower-dimensional tori for Hamiltonian systems, J. Differential Equations, 1999, 152(1), 1-29.

    Google Scholar

    [35] E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems. I and Ⅱ, Comm. Pure Appl. Math., 1975, 28, 91-140.

    Google Scholar

    [36] X. Zhao and Y. Li, A moser theorem for multi-scale mappings, Discrete Contin. Dyn. Syst., 2022. DOI: 10.3934/dcds.2022037.

    CrossRef Google Scholar

Article Metrics

Article views(2369) PDF downloads(374) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint