Citation: | Chaofan Pan, Manuel Pinto, Yonghui Xia. A HARTMAN-GROBMAN THEOREM FOR ALGEBRAIC DICHOTOMIES[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2640-2662. doi: 10.11948/20220260 |
Algebraic dichotomy is a generalization of an exponential dichotomy (see Lin [
[1] | L. Barreira, J. Chu and C. Valls, Robustness of nonuniform dichotomies with different growth rates, Sao Paulo J. Math. Sci., 2011, 5(2), 203-231. |
[2] | L. Barreira, J. Chu and C. Valls, Lyapunov functions for general nonuniform dichotomies, Milan J. Math., 2013, 81(1), 153-169. |
[3] | L. Backes, D. Dragičević and K. Palmer, Linearization and Hölder continuity for nonautonomous systems, J. Differential Equations, 2021, 297, 536-574. |
[4] | P. Bates and K. Lu, A Hartman-Grobman theorem for the Cahn-Hilliard and phase-field equations, J. Dynam. Differential Equations, 1994, 6(1), 101-145. doi: 10.1007/BF02219190 |
[5] | A. Bento and C. Silva, Generalized nonuniform dichotomies and local stable manifolds, J. Dynam. Differential Equations, 2013, 25(4), 1139-1158. |
[6] | L. Barreira and C. Valls, Smoothness of invariant manifolds for nonaytonomous equations, Comm. Math. Phys., 2005, 259(3), 639-677. doi: 10.1007/s00220-005-1380-z |
[7] | L. Barreira and C. Valls, Stable manifolds for nonantonomous equations without exponential dichotomy, J. Differential Equations, 2006, 221(1), 58-90. |
[8] | L. Barreira and C. Valls, Polynomial growth rates, Nonlinear Anal., 2009, 71(11), 5208-5219. |
[9] | L. Barreira and C. Valls, Stability in delay difference equations with nonuniform exponential behavior, J. Differential Equations, 2007, 238(2), 470-490. |
[10] | L. Barreira and C. Valls, Stability of dichotomies in difference equations with infinite delay, Nonlinear Anal., 2010, 72(2), 881-893. |
[11] | L. Barreira and C. Valls, A Grobman-Hartman theorem for nonuniformly hyperbolic dynamics, J. Differential Equations, 2006, 228(1), 285-310. |
[12] | L. Barreira and C. Valls, A Grobman-Hartman theorem for general nonuniform exponential dichotomies, J. Funct. Anal., 2009, 257(6), 1976-1993. |
[13] | L. Barreira and C. Valls, A simple proof of the Grobman-Hartman theorem for nonuniformly hyperbolic flows, Nonlinear Anal., 2011, 74(18), 7210-7225. |
[14] | L. Barreira and C. Valls, Dependence of topological conjugacies on parameters, J. Dynam. Differential Equations, 2010, 22(4), 787-803. |
[15] | J. Chu, Robustness of nonuniform behavior for discrete dynamics, Bull. Sci. Math., 2013, 137(8), 1031-1047. |
[16] | W. Coppel, Dichotomies in Stability Theory, Springer, Berlin, 1978. |
[17] | Á. Castañeda and I. Huerta, Nonuniform almost reducibility of nonautonomous linear differential equations, J. Math. Anal. Appl., 2020, 485(2), 123822. |
[18] | X. Chang, J. Zhang and J. Qin, Robustness of nonuniform $(\mu, \nu)$-dichotomies in Banach spaces, J. Math. Anal. Appl., 2012, 387(2), 582-594. |
[19] | J. Fenner and M. Pinto, On $(h, k)$ manifolds with asymptotic phase, J. Math. Anal. Appl., 1997, 216(2), 549-568. |
[20] | J. Fenner and M. Pinto, On a Hartman linearization theorem for a class of ODE with impulse effect, Nonlinear Anal., 1999, 38(3), 307-325. |
[21] | D. Grobman, Homeomorphism of systems of differential equations, Dokl. Akad. Nauk SSSR, 1959, 128, 880-881. |
[22] | P. Hartman, On the local linearization of differential equations, Proc. Amer. Math. Soc., 1963, (4), 568-573. |
[23] | I. Huerta, Linearization of a nonautonomous unbounded system with nonuniform contraction: A spectral approach, Discrete Contin. Dyn. Syst., 2020, 40(9), 5571-5590. |
[24] | M. Hein and J. Prüss, The Hartman-Grobman theorem for semilinear hyperbolic evolution equations, J. Differential Equations, 2016, 261(8), 4709-4727. |
[25] | H. Huang and Y. Xia, New results on linearization of differential equations with piecewise constant argument, Qual. Theor. Dyn. Syst., 2020, 19, 9. https://doi.org/10.1007/s12346-020-00353-w. doi: 10.1007/s12346-020-00353-w |
[26] | L. Jiang, Generalized exponential dichotomy and global linearization, J. Math. Anal. Appl., 2006, 315(2), 474-490. |
[27] | L. Jiang, Ordinary dichotomy and global linearization, Nonlinear Anal., 2009, 70(7), 2722-2730. |
[28] | X. Lin, Algebraic dichotomies with an application to the stability of Riemann solutions of conservation laws, J. Differential Equations, 2009, 247(11), 2924-2965. |
[29] | K. Lu, A Hartman-Grobman theorem for scalar reaction-diffusion equations, J. Differential Equations, 1991, 93(2), 364-394. |
[30] | M. Li, J. Wang and D. O'Regan, Stable manifolds for non-instantaneous impulsive nonautonomous differential equations, Electron. J. Qual. Theory Differ. Equ., 2019, 2019(82), 1-28. |
[31] | M. Li, J. Wang, D. O'Regan and M. Fečkan, Center manifolds for non-instantaneous impulsive equations under nonuniform hyperbolicity, C. R. Math., 2020, 358(3), 341-364. |
[32] | R. Naulin and M. Pinto, Roughness of $(h, k)$ -dichotomies, J. Differential Equations, 1995, 118(1), 20-35. |
[33] | K. Palmer, A generalization of Hartman's linearization theorem, J. Math. Anal. Appl., 1973, 41, 753-758. |
[34] | G. Papaschinopoulos, A linearization result for a differential equation with piecewise constant argument, Analysis, 1996, 16(2), 161-170. |
[35] | O. Perron, Die Stabilitsfrage bei Differential gleichungen, Math. Z., 1930, 32(1), 703-728. |
[36] | C. Pötzche, Exponential dichotomies of linear dynamic equations on measure chains under slowly varying coefficients, J. Math. Anal. Appl. 2004, 289(1), 317-335. |
[37] | C. Pötzche, Exponential dichotomies for linear dynamic equations on measure chains, Nonlinear Anal., 2001, 47(2), 873-884. |
[38] | C. Pötzche, Topological decoupling, linearization and perturbation on inhomogeneous time scales, J. Differential Equations, 2008, 245(5), 1210-1242. |
[39] | C. Pugh, On a theorem of P. Hartman, Amer. J. Math., 1969, 91(2), 363-367. |
[40] | M. Pinto and G. Robledo, A Grobman-Hartman theorem for differential equations with piecewise constant arguments of mixed type, Z. Anal. Anwend., 2018, 37(1), 101-126. |
[41] | A. Reinfelds, A generalized theorem of Grobman and Hartman, Latv. Mat. Ezhegodnik, 1985, (29), 84-88. |
[42] | A. Reinfelds and L. Sermone, Equivalence of nonlinear differential equations with impulse effect in Banach space, Acta Univ. Latviensis, 1992, 577(3), 68-73. |
[43] | J. Wang, M. Li and D. O'Regan, Lyapunov regularity and stability of linear non-instantaneous impulsive differential systems, IMA J. Appl. Math., 2019, 84(4), 712-747. |
[44] | J. Wang, M. Li, D. O'Regan and M. Fečkan, Robustness for linear evolution equations with non-instantaneous impulsive effects, Bull. Sci. Math., 2020, 159, 102827. |
[45] | Y. Xia, X. Chen and V. Romanovski, On the linearization theorem of Fenner and Pinto, J. Math. Anal. Appl., 2013, 400(2), 439-451. |
[46] | Y. Xia, R. Wang, K. Kou and O'Regan, On the linearization theorem for nonautonomous differential equations, Bull. Sci. Math., 2015, 139(7), 829-846. |
[47] | J. Zhang, M. Fan and H. Zhu, Nonuniform $(h, k, \mu, \nu)$-dichotomy with applications to nonautonomous dynamical systems, J. Math. Anal. Appl., 2017, 452(1), 505-551. |
[48] | J. Zhang, X. Chang and J. Wang, Existence and robustness of nonuniform $(h, k, \mu, \nu)$ -dichotomies for nonautonomous impulsive differential equations, 2013, 400(2), 710-723. |
[49] | C. Zou, Y. Xia and M. Pinto, Hölder regularity of topological equivalence functions of DEPCAGs with unbounded nonlinear terms, Sci. Sin. Math., 2020, 50(6), 847-872 (In Chinese). |
[50] | C. Zou, Y. Xia, M. Pinto, J. Shi and Y. Bai, Boundness and Linearisation of a class of differential equations with piecewise constant argument, Qual. Theor. Dyn. Syst., 2019, 18(2), 495-531. |