2022 Volume 12 Issue 6
Article Contents

Chaofan Pan, Manuel Pinto, Yonghui Xia. A HARTMAN-GROBMAN THEOREM FOR ALGEBRAIC DICHOTOMIES[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2640-2662. doi: 10.11948/20220260
Citation: Chaofan Pan, Manuel Pinto, Yonghui Xia. A HARTMAN-GROBMAN THEOREM FOR ALGEBRAIC DICHOTOMIES[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2640-2662. doi: 10.11948/20220260

A HARTMAN-GROBMAN THEOREM FOR ALGEBRAIC DICHOTOMIES

  • Corresponding author: Email: xiaoutlook@163.com, yhxia@zjnu.cn.(Y. Xia)
  • Fund Project: This paper was supported by the National Natural Science Foundation of China under Grant (Nos. 11931016, 11671176), the Natural Science Foundation of Zhejiang Province under Grant (No. LY20A010016) and Grant Fondecyt (No. 1170466), Fondecyt 038-2021-Perú
  • Algebraic dichotomy is a generalization of an exponential dichotomy (see Lin [28]). This paper gives a version of Hartman-Grobman linearization theorem assuming that linear system admits an algebraic dichotomy, which generalizes the Palmer's linearization theorem. Besides, we prove that the homeomorphism in the linearization theorem is Hölder continuous (and has a Hölder continuous inverse). Comparing with exponential dichotomy, algebraic dichotomy is more complicate. The exponential dichotomy leads us to the estimates $ \int_{-\infty}^{t}e^{-\alpha(t-s)}ds $ and $ \int_{t}^{+\infty}e^{-\alpha(s-t)}ds $ which are convergent. However, the algebraic dichotomy will leads us to $ \int_{-\infty}^{t}\left(\frac{\mu(t)}{\mu(s)}\right)^{-\alpha}ds $ or $ \int_{t}^{+\infty}\left(\frac{\mu(s)}{\mu(t)}\right)^{-\alpha}ds $, whose the convergence is unknown in the sense of Riemann.

    MSC: 34C41, 34D10, 34D09, 34C40, 34D05
  • 加载中
  • [1] L. Barreira, J. Chu and C. Valls, Robustness of nonuniform dichotomies with different growth rates, Sao Paulo J. Math. Sci., 2011, 5(2), 203-231.

    Google Scholar

    [2] L. Barreira, J. Chu and C. Valls, Lyapunov functions for general nonuniform dichotomies, Milan J. Math., 2013, 81(1), 153-169.

    Google Scholar

    [3] L. Backes, D. Dragičević and K. Palmer, Linearization and Hölder continuity for nonautonomous systems, J. Differential Equations, 2021, 297, 536-574.

    Google Scholar

    [4] P. Bates and K. Lu, A Hartman-Grobman theorem for the Cahn-Hilliard and phase-field equations, J. Dynam. Differential Equations, 1994, 6(1), 101-145. doi: 10.1007/BF02219190

    CrossRef Google Scholar

    [5] A. Bento and C. Silva, Generalized nonuniform dichotomies and local stable manifolds, J. Dynam. Differential Equations, 2013, 25(4), 1139-1158.

    Google Scholar

    [6] L. Barreira and C. Valls, Smoothness of invariant manifolds for nonaytonomous equations, Comm. Math. Phys., 2005, 259(3), 639-677. doi: 10.1007/s00220-005-1380-z

    CrossRef Google Scholar

    [7] L. Barreira and C. Valls, Stable manifolds for nonantonomous equations without exponential dichotomy, J. Differential Equations, 2006, 221(1), 58-90.

    Google Scholar

    [8] L. Barreira and C. Valls, Polynomial growth rates, Nonlinear Anal., 2009, 71(11), 5208-5219.

    Google Scholar

    [9] L. Barreira and C. Valls, Stability in delay difference equations with nonuniform exponential behavior, J. Differential Equations, 2007, 238(2), 470-490.

    Google Scholar

    [10] L. Barreira and C. Valls, Stability of dichotomies in difference equations with infinite delay, Nonlinear Anal., 2010, 72(2), 881-893.

    Google Scholar

    [11] L. Barreira and C. Valls, A Grobman-Hartman theorem for nonuniformly hyperbolic dynamics, J. Differential Equations, 2006, 228(1), 285-310.

    Google Scholar

    [12] L. Barreira and C. Valls, A Grobman-Hartman theorem for general nonuniform exponential dichotomies, J. Funct. Anal., 2009, 257(6), 1976-1993.

    Google Scholar

    [13] L. Barreira and C. Valls, A simple proof of the Grobman-Hartman theorem for nonuniformly hyperbolic flows, Nonlinear Anal., 2011, 74(18), 7210-7225.

    Google Scholar

    [14] L. Barreira and C. Valls, Dependence of topological conjugacies on parameters, J. Dynam. Differential Equations, 2010, 22(4), 787-803.

    Google Scholar

    [15] J. Chu, Robustness of nonuniform behavior for discrete dynamics, Bull. Sci. Math., 2013, 137(8), 1031-1047.

    Google Scholar

    [16] W. Coppel, Dichotomies in Stability Theory, Springer, Berlin, 1978.

    Google Scholar

    [17] Á. Castañeda and I. Huerta, Nonuniform almost reducibility of nonautonomous linear differential equations, J. Math. Anal. Appl., 2020, 485(2), 123822.

    Google Scholar

    [18] X. Chang, J. Zhang and J. Qin, Robustness of nonuniform $(\mu, \nu)$-dichotomies in Banach spaces, J. Math. Anal. Appl., 2012, 387(2), 582-594.

    Google Scholar

    [19] J. Fenner and M. Pinto, On $(h, k)$ manifolds with asymptotic phase, J. Math. Anal. Appl., 1997, 216(2), 549-568.

    Google Scholar

    [20] J. Fenner and M. Pinto, On a Hartman linearization theorem for a class of ODE with impulse effect, Nonlinear Anal., 1999, 38(3), 307-325.

    Google Scholar

    [21] D. Grobman, Homeomorphism of systems of differential equations, Dokl. Akad. Nauk SSSR, 1959, 128, 880-881.

    Google Scholar

    [22] P. Hartman, On the local linearization of differential equations, Proc. Amer. Math. Soc., 1963, (4), 568-573.

    Google Scholar

    [23] I. Huerta, Linearization of a nonautonomous unbounded system with nonuniform contraction: A spectral approach, Discrete Contin. Dyn. Syst., 2020, 40(9), 5571-5590.

    Google Scholar

    [24] M. Hein and J. Prüss, The Hartman-Grobman theorem for semilinear hyperbolic evolution equations, J. Differential Equations, 2016, 261(8), 4709-4727.

    Google Scholar

    [25] H. Huang and Y. Xia, New results on linearization of differential equations with piecewise constant argument, Qual. Theor. Dyn. Syst., 2020, 19, 9. https://doi.org/10.1007/s12346-020-00353-w. doi: 10.1007/s12346-020-00353-w

    CrossRef Google Scholar

    [26] L. Jiang, Generalized exponential dichotomy and global linearization, J. Math. Anal. Appl., 2006, 315(2), 474-490.

    Google Scholar

    [27] L. Jiang, Ordinary dichotomy and global linearization, Nonlinear Anal., 2009, 70(7), 2722-2730.

    Google Scholar

    [28] X. Lin, Algebraic dichotomies with an application to the stability of Riemann solutions of conservation laws, J. Differential Equations, 2009, 247(11), 2924-2965.

    Google Scholar

    [29] K. Lu, A Hartman-Grobman theorem for scalar reaction-diffusion equations, J. Differential Equations, 1991, 93(2), 364-394.

    Google Scholar

    [30] M. Li, J. Wang and D. O'Regan, Stable manifolds for non-instantaneous impulsive nonautonomous differential equations, Electron. J. Qual. Theory Differ. Equ., 2019, 2019(82), 1-28.

    Google Scholar

    [31] M. Li, J. Wang, D. O'Regan and M. Fečkan, Center manifolds for non-instantaneous impulsive equations under nonuniform hyperbolicity, C. R. Math., 2020, 358(3), 341-364.

    Google Scholar

    [32] R. Naulin and M. Pinto, Roughness of $(h, k)$ -dichotomies, J. Differential Equations, 1995, 118(1), 20-35.

    Google Scholar

    [33] K. Palmer, A generalization of Hartman's linearization theorem, J. Math. Anal. Appl., 1973, 41, 753-758.

    Google Scholar

    [34] G. Papaschinopoulos, A linearization result for a differential equation with piecewise constant argument, Analysis, 1996, 16(2), 161-170.

    Google Scholar

    [35] O. Perron, Die Stabilitsfrage bei Differential gleichungen, Math. Z., 1930, 32(1), 703-728.

    Google Scholar

    [36] C. Pötzche, Exponential dichotomies of linear dynamic equations on measure chains under slowly varying coefficients, J. Math. Anal. Appl. 2004, 289(1), 317-335.

    Google Scholar

    [37] C. Pötzche, Exponential dichotomies for linear dynamic equations on measure chains, Nonlinear Anal., 2001, 47(2), 873-884.

    Google Scholar

    [38] C. Pötzche, Topological decoupling, linearization and perturbation on inhomogeneous time scales, J. Differential Equations, 2008, 245(5), 1210-1242.

    Google Scholar

    [39] C. Pugh, On a theorem of P. Hartman, Amer. J. Math., 1969, 91(2), 363-367.

    Google Scholar

    [40] M. Pinto and G. Robledo, A Grobman-Hartman theorem for differential equations with piecewise constant arguments of mixed type, Z. Anal. Anwend., 2018, 37(1), 101-126.

    Google Scholar

    [41] A. Reinfelds, A generalized theorem of Grobman and Hartman, Latv. Mat. Ezhegodnik, 1985, (29), 84-88.

    Google Scholar

    [42] A. Reinfelds and L. Sermone, Equivalence of nonlinear differential equations with impulse effect in Banach space, Acta Univ. Latviensis, 1992, 577(3), 68-73.

    Google Scholar

    [43] J. Wang, M. Li and D. O'Regan, Lyapunov regularity and stability of linear non-instantaneous impulsive differential systems, IMA J. Appl. Math., 2019, 84(4), 712-747.

    Google Scholar

    [44] J. Wang, M. Li, D. O'Regan and M. Fečkan, Robustness for linear evolution equations with non-instantaneous impulsive effects, Bull. Sci. Math., 2020, 159, 102827.

    Google Scholar

    [45] Y. Xia, X. Chen and V. Romanovski, On the linearization theorem of Fenner and Pinto, J. Math. Anal. Appl., 2013, 400(2), 439-451.

    Google Scholar

    [46] Y. Xia, R. Wang, K. Kou and O'Regan, On the linearization theorem for nonautonomous differential equations, Bull. Sci. Math., 2015, 139(7), 829-846.

    Google Scholar

    [47] J. Zhang, M. Fan and H. Zhu, Nonuniform $(h, k, \mu, \nu)$-dichotomy with applications to nonautonomous dynamical systems, J. Math. Anal. Appl., 2017, 452(1), 505-551.

    Google Scholar

    [48] J. Zhang, X. Chang and J. Wang, Existence and robustness of nonuniform $(h, k, \mu, \nu)$ -dichotomies for nonautonomous impulsive differential equations, 2013, 400(2), 710-723.

    Google Scholar

    [49] C. Zou, Y. Xia and M. Pinto, Hölder regularity of topological equivalence functions of DEPCAGs with unbounded nonlinear terms, Sci. Sin. Math., 2020, 50(6), 847-872 (In Chinese).

    Google Scholar

    [50] C. Zou, Y. Xia, M. Pinto, J. Shi and Y. Bai, Boundness and Linearisation of a class of differential equations with piecewise constant argument, Qual. Theor. Dyn. Syst., 2019, 18(2), 495-531.

    Google Scholar

Article Metrics

Article views(2201) PDF downloads(388) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint