2023 Volume 13 Issue 3
Article Contents

Ritu Nigam, Kapil Kant, BV Rathish Kumar, Gnaneshwar Nelakanti. APPROXIMATION OF WEAKLY SINGULAR NON-LINEAR VOLTERRA-URYSOHN INTEGRAL EQUATIONS BY PIECEWISE POLYNOMIAL PROJECTION METHODS BASED ON GRADED MESH[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1359-1387. doi: 10.11948/20220147
Citation: Ritu Nigam, Kapil Kant, BV Rathish Kumar, Gnaneshwar Nelakanti. APPROXIMATION OF WEAKLY SINGULAR NON-LINEAR VOLTERRA-URYSOHN INTEGRAL EQUATIONS BY PIECEWISE POLYNOMIAL PROJECTION METHODS BASED ON GRADED MESH[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1359-1387. doi: 10.11948/20220147

APPROXIMATION OF WEAKLY SINGULAR NON-LINEAR VOLTERRA-URYSOHN INTEGRAL EQUATIONS BY PIECEWISE POLYNOMIAL PROJECTION METHODS BASED ON GRADED MESH

  • In this article, we address the approximation solution of Volterra-Urysohn integral equations which involves weakly singular kernels. In order to get better convergence rates, projection methods namely Galerkin and multi Galerkin methods, along with their iterated versions are used in the space of piecewise polynomials subspaces based on the graded mesh. In addition, we compute the superconvergence results for the proposed integral equation and show that iterated Galerkin method outperforms Galerkin method in terms of order of convergence. Further, we demonstrate numerical examples to verify the proposed theoretical framework.

    MSC: 45B05, 45G10, 65R20
  • 加载中
  • [1] M. Ahues, A. Largillier and B. Limaye, Spectral computations for bounded operators, Chapman and Hall/CRC, 2001.

    Google Scholar

    [2] P. De Angelis, R. De Marchis and A. L. Martire, A new numerical method for a class of Volterra and Fredholm integral equations, J. Comput. Appl. Math., 2020, 379, 112944. doi: 10.1016/j.cam.2020.112944

    CrossRef Google Scholar

    [3] P. Baratella, A Nyström interpolant for some weakly singular nonlinear Volterra integral equations, J. Comput. Appl. Math., 2013 237(1), 542-555. doi: 10.1016/j.cam.2012.06.024

    CrossRef Google Scholar

    [4] S. Bazm, P. Lima and S. Nemati, Analysis of the Euler and trapezoidal discretization methods for the numerical solution of nonlinear functional Volterra integral equations of Urysohn type, J. Comput. Appl. Math., 2021, 398, 113628. doi: 10.1016/j.cam.2021.113628

    CrossRef Google Scholar

    [5] H. Brunner, Collocation methods for Volterra integral and related functional differential equations, Cambridge university press, 2004, 15.

    Google Scholar

    [6] H. Brunner, Nonpolynomial spline collocation for Volterra equations with weakly singular kernels, SIAM J. Numer. Anal., 1983, 20(6), 1106-1119. doi: 10.1137/0720080

    CrossRef Google Scholar

    [7] H. Brunner, The approximate solution of Volterra equations with nonsmooth solutions, Util. Math., 1985, 27, 57-95.

    Google Scholar

    [8] H. Brunner, The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes, Math. Comput., 1985, 45(172), 417-437. doi: 10.1090/S0025-5718-1985-0804933-3

    CrossRef Google Scholar

    [9] H. Brunner, A. Pedas and G. Vainikko, The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations, Math. Comput., 1999, 68(227), 1079-1095. doi: 10.1090/S0025-5718-99-01073-X

    CrossRef Google Scholar

    [10] Z. Chen, G. Long and G. Nelakanti, The discrete multi-projection method for Fredholm integral equations of the second kind, J. Integral Equations Appl., 2007, 19(2), 143-162.

    Google Scholar

    [11] N. M. Darani, K. Maleknejad and H. Mesgarani, A new approach for two-dimensional nonlinear mixed Volterra-Fredholm integral equations and its convergence analysis, TWMS J. Pure Appl. Math., 2019, 10(1), 132-139.

    Google Scholar

    [12] I. G. Graham, Galerkin methods for second kind integral equations with singularities, Math. Comput., 1982, 39(160), 519-533. doi: 10.1090/S0025-5718-1982-0669644-3

    CrossRef Google Scholar

    [13] F. de Hoog and R. Weiss, On the solution of a Volterra integral equation with a weakly singular kernel, SIAM J. Numer. Anal., 1973, 4(4), 561-573. doi: 10.1137/0504049

    CrossRef Google Scholar

    [14] H. Kaneko, R. D. Noren and Y. Xu, Numerical solutions for weakly singular Hammerstein equations and their superconvergence, J. Integral Equations Appl., 1992, 4(3), 391-407.

    Google Scholar

    [15] R. Katani, A Numerical Method for Proportional Delay Volterra Integral Equations, Int. J. Appl. Comput. Math., 2021, 7(4), 1-13.

    Google Scholar

    [16] R. Karim and A. AL-Rammahi, q-homotopy analysis method for solving nonlinear Fredholm integral equation of the second kind, Int. J. Nonlinear Anal. Appl., 2021, 12(2), 2145-2152.

    Google Scholar

    [17] M. Kazemi, V. Torkashvand and E. Fathizade, A new iterative method of successive approximation to solve nonlinear Urysohn integral equations by Haar wavelet, International Journal of Mathematical Modelling and Computations, 2020, 10(4 (Fall)), 281-294.

    Google Scholar

    [18] K. Kant and G. Nelakanti, Galerkin and multi-Galerkin methods for weakly singular Volterra–Hammerstein integral equations and their convergence analysis, Computat. Appl. Math., 2020, 39(2), 1-28.

    Google Scholar

    [19] C. Lubich, Runge-Kutta theory for Volterra and Abel integral equations of the second kind, Math. Comput., 1983, 41(163), 87-102. doi: 10.1090/S0025-5718-1983-0701626-6

    CrossRef Google Scholar

    [20] M. Mandal and G. Nelakanti, Superconvergence Results for Volterra-Urysohn Integral Equations of Second Kind, ICMC, 2017, 655, 358-379.

    Google Scholar

    [21] W. R. Mann and F. Wolf, Heat transfer between solids and gases under nonlinear boundary conditions, Q. Appl. Math., 1951, 9(2), 163-184. doi: 10.1090/qam/42596

    CrossRef Google Scholar

    [22] S. Micula, A numerical method for weakly singular nonlinear Volterra integral equations of the second kind, Symmetry, 2020, 12(11), 1862. doi: 10.3390/sym12111862

    CrossRef Google Scholar

    [23] R. K. Miller and A. Feldstein, Smoothness of solutions of Volterra integral equations with weakly singular kernels, SIAM J. Math. Anal., 1971, 2(2), 242-258. doi: 10.1137/0502022

    CrossRef Google Scholar

    [24] W. E. Olmstead and R. A. Handelsman, Diffusion in a semi-infinite region with nonlinear surface dissipation, SIAM review, 1976, 18(2), 275-291. doi: 10.1137/1018044

    CrossRef Google Scholar

    [25] D. O'regan, Volterra and Urysohn integral equations in Banach spaces, J. Appl. Math. Stoch. Anal., 1998, 11(4), 449-464. doi: 10.1155/S1048953398000379

    CrossRef Google Scholar

    [26] A. Orsi, Product integration for Volterra integral equations of the second kind with weakly singular kernels, Math. Comput., 1996, 65(215), 1201-1212. doi: 10.1090/S0025-5718-96-00736-3

    CrossRef Google Scholar

    [27] C. Pozrikidis, The Numerical Solution of Integral Equations of the Second Kind, J. Fluid Mech., 1998, 372, 375-378.

    Google Scholar

    [28] M. Rebelo and T. Diogo, A hybrid collocation method for a nonlinear Volterra integral equation with weakly singular kernel, J. Comput. Appl. Math., 2010, 234(9), 2859-2869. doi: 10.1016/j.cam.2010.01.034

    CrossRef Google Scholar

    [29] L. Schumaker, Spline functions: basic theory, Cambridge University Press, 2007.

    Google Scholar

    [30] S. Sohrabi, H. Ranjbar and M. Saei, Convergence analysis of the Jacobi-collocation method for nonlinear weakly singular Volterra integral equations, Appl. Math. Comput., 2017, 299, 141-152.

    Google Scholar

    [31] T. Tang, X. Xu and J. Cheng, On spectral methods for Volterra integral equations and the convergence analysis, J. Comput. Math., 2008 26(6), 825-837.

    Google Scholar

    [32] L. Tao and H. Yong, Extrapolation method for solving weakly singular nonlinear Volterra integral equations of the second kind, J. Math. Anal. Appl., 2006, 324(1), 225-237. doi: 10.1016/j.jmaa.2005.12.013

    CrossRef Google Scholar

    [33] G. M. Vainikko, Galerkin's perturbation method and the general theory of approximate methods for non-linear equations, Comput. Math. Math., 1967, 7(4), 1-41. doi: 10.1016/0041-5553(67)90140-1

    CrossRef Google Scholar

    [34] Z. Xie, X. Li and T. Tang, Convergence analysis of spectral Galerkin methods for Volterra type integral equations, J. Sci. Comput., 2012, 53(2), 414-434. doi: 10.1007/s10915-012-9577-8

    CrossRef Google Scholar

    [35] M. A. Zaky and I. G. Ameen, A novel Jacob spectral method for multi-dimensional weakly singular nonlinear Volterra integral equations with nonsmooth solutions, Eng. Comput., 2021, 37(4), 2623-2631. doi: 10.1007/s00366-020-00953-9

    CrossRef Google Scholar

Figures(2)  /  Tables(4)

Article Metrics

Article views(2035) PDF downloads(484) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint