2022 Volume 12 Issue 3
Article Contents

Yuhua Long, Qinqin Zhang. SIGN-CHANGING SOLUTIONS OF A DISCRETE FOURTH-ORDER LIDSTONE PROBLEM WITH THREE PARAMETERS[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 1118-1140. doi: 10.11948/20220148
Citation: Yuhua Long, Qinqin Zhang. SIGN-CHANGING SOLUTIONS OF A DISCRETE FOURTH-ORDER LIDSTONE PROBLEM WITH THREE PARAMETERS[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 1118-1140. doi: 10.11948/20220148

SIGN-CHANGING SOLUTIONS OF A DISCRETE FOURTH-ORDER LIDSTONE PROBLEM WITH THREE PARAMETERS

  • Dedicated to Professor Jibin Li on the occasion of his 80th birthday.
  • Corresponding author: Email address: qqzhang@gzhu.edu.cn(Q. Zhang)
  • By combining the method of the invariant sets of descending flow with variational technique, we give a series of criteria in terms of different values of $ \lambda $ to ensure that a discrete fourth-order Lidstone problem with three parameters possesses at least four solutions. It is further shown that these four solutions consist of one sign-changing solution, one positive solution, one negative solution and one trivial solution. Finally, three examples are also provided to illustrate our theoretical results.

    MSC: 39A10, 35B20
  • 加载中
  • [1] D. R. Anderson and F. Minhós, A discrete fourth-order lidstone problem with parameters, Appl. Math. Comput., 2009, 214, 523–533.

    Google Scholar

    [2] G. Bonanno and D. O'Regan, A boundary value problem on the half-line via critical point methods, Dyn. Syst. Appl., 2006, 15, 395–408.

    Google Scholar

    [3] S. Du and Z. Zhou, On the existence of multiple solutions for a partial discrete Dirichlet boundary value problem with mean curvature operator, Adv. Nonlinear Anal., 2022, 11, 198–211.

    Google Scholar

    [4] L. Erbe, B. Jia and Q. Zhang, Homoclinic solutions of discrete nonlinear systems via viriational method, J. Appl. Anal. Compt., 2019, 9(1), 271–294.

    Google Scholar

    [5] J. R. Graef, S. Heidarkhani, L. Kong and M. Wang, Existence of solutions to a discrete fourth order boundary value problem, J. Difference Equ. Appl., 2018, 24, 849–858. doi: 10.1080/10236198.2018.1428963

    CrossRef Google Scholar

    [6] J. R. Graef, L. Kong and M. Wang, Two nontrivial solutions for a discrete fourth order periodic boundary value problem, Commun. Appl. Anal., 2015, 19, 487–496.

    Google Scholar

    [7] S. Goldberg, Introduction to Difference Equations: With Illustrative Examples from Economics, Psychology, and Sociology, New York, John Wiley, 1958.

    Google Scholar

    [8] T. He and Y. Su, On discrete fourth-order boundary value problems with three parameters, J. Comput. Appl. Math., 2010, 233, 2506–2520. doi: 10.1016/j.cam.2009.10.032

    CrossRef Google Scholar

    [9] S. Heidarkhani, G. A. Afrouzi, A. Salari and G. Caristi, Discrete fourth-order boundary value problems with four parameters, Appl. Math. Comput., 2019, 346, 167–182.

    Google Scholar

    [10] W. G. Kelly and A. C. Peterson, Difference Equations: An Introduction with Applications, Academic Press, New York, 1991.

    Google Scholar

    [11] G. Lin and J. Yu, Homoclinic solutions of periodic discrete Schrődinger equations with local superquadratic, SIAM J. MATH. ANAL., 2022, 54(2), 1966– 2005. doi: 10.1137/21M1413201

    CrossRef Google Scholar

    [12] G. Lin, Z. Zhou and J. Yu, Ground state solutions of discrete asymptotically linear Schrödinge equations with bounded and non-periodic potentials, J. Dyn. Diff. Equat., 2020, 32(2), 527–555. doi: 10.1007/s10884-019-09743-4

    CrossRef Google Scholar

    [13] X. Liu and J. Liu, On a boundary value problem in the half-space, J. Differential Equat., 2011, 250, 2099–2142. doi: 10.1016/j.jde.2010.11.001

    CrossRef Google Scholar

    [14] Z. Liu and J. Sun, Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. Differential Equat., 2001, 172(2), 257–299. doi: 10.1006/jdeq.2000.3867

    CrossRef Google Scholar

    [15] Y. Long and L. Wang, Global dynamics of a delayed two-patch discrete SIR disease model, Commu. Nonlinear Sci. Numer. Simul., 2020, 83, 105117. doi: 10.1016/j.cnsns.2019.105117

    CrossRef Google Scholar

    [16] Y. Long and X. Deng, Existence and multiplicity solutions for discrete Kirchhoff type problems, Appl. Math. Lett., 2022, 126, 107817. doi: 10.1016/j.aml.2021.107817

    CrossRef Google Scholar

    [17] Y. Long and H. Zhang, Three nontrivial solutions for second order partial difference equation via Morse theory, J. Funct. Spaces, 2022. https://doi.org/10.1155/2022/1564961. doi: 10.1155/2022/1564961

    CrossRef Google Scholar

    [18] Y. Long and J. Chen, Existence of multiple solutions to second-order discrete Neumann boundary value problems, Appl. Math. Lett., 2018, 83, 7–14. doi: 10.1016/j.aml.2018.03.006

    CrossRef Google Scholar

    [19] Y. Long and B. Zeng, Multiple and sign-changing solutions for discrete Robin boundary value problem with parameter dependence, Open Math., 2017, 15, 1549–1557. doi: 10.1515/math-2017-0129

    CrossRef Google Scholar

    [20] Y. Long, Existence of two homoclinic solutions for a nonperiodic difference equation with a perturbation, AIMS Math., 2021, 6(5), 4786–4802. doi: 10.3934/math.2021281

    CrossRef Google Scholar

    [21] Y. Long, S. Wang and J. Chen, Multiple solutions of fourth-order difference equations with different boundary conditions, Bound. Value Probl., 2019, 2019, 152. doi: 10.1186/s13661-019-1265-2

    CrossRef Google Scholar

    [22] Y. Long and S. Wang, Multiple solutions for nonlinear functional difference equations by the invariant sets of descending flow, J. Difference Equ. Appl., 2019, 25(12), 1768–1789. doi: 10.1080/10236198.2019.1694014

    CrossRef Google Scholar

    [23] Y. Long, Multiple results on nontrivial solutions of discrete Kirchhoff type problems, J. Appl. Math. Comput., 2022, to appear.

    Google Scholar

    [24] Y. Long, Existence of multiple and sign-changing solutions for a second-order nonlinear functional difference equation with periodic coefficients, J. Difference Equ. Appl., 2020, 26, 966–986. doi: 10.1080/10236198.2020.1804557

    CrossRef Google Scholar

    [25] A. Losota, A discrete boundary value problem, Ann. Polon. Math., 1968, 20, 183–190. doi: 10.4064/ap-20-2-183-190

    CrossRef Google Scholar

    [26] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, Berlin, 1989.

    Google Scholar

    [27] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, in: Proceedings of the CBMS Regional Conference Series in Mathematics, Vol. 65, American Mathematical Society. Providence, RI, 1986.

    Google Scholar

    [28] Y. Shi and J. Yu, Wolbachia infection enhancing and decaying domains in mosquito population based on discrete models, J. Biol. Dyn., 2020, 14(1), 679– 695. doi: 10.1080/17513758.2020.1805035

    CrossRef Google Scholar

    [29] S. Stević, B. Iričanin, W. Kosmala et al., Note on a solution form to the cyclic bilinear system of difference equations, Appl. Math. Lett., 2020, 106690.

    Google Scholar

    [30] S. Wang and Y. Long, Multiple solutions of fourth-order functional difference equation with periodic boundary conditions, Appl. Math. Lett., 2020, 104, 106292. doi: 10.1016/j.aml.2020.106292

    CrossRef Google Scholar

    [31] J. Yu and B. Zheng, Modeling Wolbachia infection in mosquito population via discrete dynamical model, J. Difference Equ. Appl., 2019, 25(11), 1549–1567. doi: 10.1080/10236198.2019.1669578

    CrossRef Google Scholar

    [32] J. Yu and Z. Guo, On boundary value problems for a discrete generalized Emden-Fowler equation, J. Differential Equations, 2006, 231(1), 18–31. doi: 10.1016/j.jde.2006.08.011

    CrossRef Google Scholar

    [33] J. Yu and J. Li, Discrete-time models for interactive wild and sterile mosquitoes with general time steps, Mathematical Biosciences, 2022. https://doi.org/10.1016/j.mbs.2022.108797. doi: 10.1016/j.mbs.2022.108797

    CrossRef Google Scholar

    [34] B. Zhang, L. Kong, Y. Sun and X. Deng, Existence of positive solutions for BVPs of fourth-order difference equations, Appl. Math. Comput., 2002, 131(2– 3), 583–591.

    Google Scholar

    [35] Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with local superquadratic conditions, Commun. Pure Appl. Anal., 2019, 18, 425–434. doi: 10.3934/cpaa.2019021

    CrossRef Google Scholar

    [36] B. Zheng and J. Yu, Existence and uniqueness of periodic orbits in a discrete model on W olbachia infection frequency, Adv. Nonlinear Anal., 2022, 11, 212– 224.

    Google Scholar

    [37] B. Zheng, J. Li and J. Yu, One discrete dynamical model on W olbachia infection frequency in mosquito populations, Sci. China Math., 2021. https://doi.org/10.1007/s11425-021-1891-7. doi: 10.1007/s11425-021-1891-7

    CrossRef Google Scholar

    [38] Z. Zhou and J. Ling, Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with ϕc-Laplacian, Appl. Math. lett., 2019, 91, 28–34. doi: 10.1016/j.aml.2018.11.016

    CrossRef Google Scholar

Tables(2)

Article Metrics

Article views(2392) PDF downloads(399) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint