2023 Volume 13 Issue 6
Article Contents

Xinyu Guan, Wen Si. ALMOST-PERIODIC BIFURCATIONS FOR 2-DIMENSIONAL DEGENERATE HAMILTONIAN VECTOR FIELDS[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3054-3073. doi: 10.11948/20220163
Citation: Xinyu Guan, Wen Si. ALMOST-PERIODIC BIFURCATIONS FOR 2-DIMENSIONAL DEGENERATE HAMILTONIAN VECTOR FIELDS[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3054-3073. doi: 10.11948/20220163

ALMOST-PERIODIC BIFURCATIONS FOR 2-DIMENSIONAL DEGENERATE HAMILTONIAN VECTOR FIELDS

  • Author Bio: Email: guanxinyumath@163.com(X. Guan)
  • Corresponding author: Email: siwenmath@sdu.edu.cn(W. Si)
  • Fund Project: The first author is supported by National Natural Science Foundation of China (Grant Nos. 12301201) and Shandong Provincial Natural Science Foundation, China (No. ZR2023QA055); The second author is supported by National Natural Science Foundation of China (Nos. 12001315, 11971261, 11571201, 12071255, 12171281) and Shandong Provincial Natural Science Foundation, China (Grant No. ZR2020MA015)
  • In this paper, we develop almost-periodic tori bifurcation theory for $ 2 $-dimensional degenerate Hamiltonian vector fields. With KAM theory and singularity theory, we show that the universal unfolding of completely degenerate Hamiltonian $ N(x, y)=x^2y+y^l $ and partially degenerate Hamiltonian $ M(x, y)=x^2+y^l, $ respectively, can persist under any small almost-periodic time-dependent perturbation and some appropriate non-resonant conditions on almost-periodic frequency $ \omega=(\cdots, \omega_i, \cdots)_{i\in \mathbb{Z}}\in \mathbb{R}^\mathbb{Z}. $ We extend the analysis about almost-periodic bifurcations of one-dimensional degenerate vector fields considered in [21] to $ 2 $-dimensional degenerate vector fields. Our main results (Theorem 2.1 and Theorem 2.2) imply infinite-dimensional degenerate umbilical tori or normally parabolic tori bifurcate according to a generalised umbilical catastrophe or generalised cuspoid catastrophe under any small almost-periodic perturbation. For the proof in this paper we use the overall strategy of [21], which however has to be substantially developed to deal with the equations considered here.

    MSC: 58F15, 58F17, 53C35
  • 加载中
  • [1] L. Biasco, J. E. Massetti and M. Procesi, Almost periodic invariant tori for the NLS on the circle, Annales de l Institut Henri Poincare (C) Non Linear Analysis, 2021, 38(3), 711–758. doi: 10.1016/j.anihpc.2020.09.003

    CrossRef Google Scholar

    [2] H. W. Broer, Quasi-Periodicity in Dissipative and Conservative Systems, Proceedings Symposium Henri Poincaré, Université Libre de Bruxelles, Solvay Institutes, 2004.

    Google Scholar

    [3] H. W. Broer, S. N. Chow, Y. Kim and G. Vegter, The Hamiltonian double-zero eigenvalue, normal forms and homoclinic chaos, Waterloo 1992 (Fields Institute Communications) ed W. F. Langford and W. Nagata, vol. 4, 1–19.

    Google Scholar

    [4] H. W. Broer, S. N. Chow, Y. Kim and G. Vegter, A normally elliptic Hamiltonian bifurcation, Z. Angew. Math. Phys., 1993, 44, 389–435. doi: 10.1007/BF00953660

    CrossRef Google Scholar

    [5] H. W. Broer, H. Hanßmann and J. You, Bifurcations of normally parabolic in Hamiltonian systems, Nonlinearity, 2005, 18, 1735–1769. doi: 10.1088/0951-7715/18/4/018

    CrossRef Google Scholar

    [6] H. W. Broer, H. Hanßmann and J. You, Umbilical torus bifurcations in Hamiltonian systems, J. Differential Equations, 2006, 222, 233–262. doi: 10.1016/j.jde.2005.06.030

    CrossRef Google Scholar

    [7] H. W. Broer, G. B. Huitema and M. B. Sevryuk, Quasi-Periodic Motions in Families of Dynamical Systems, Lecture Notes in Matematics, vol. 1645, Springer, Heidelberg, 1996.

    Google Scholar

    [8] H. W. Broer, G. B. Huitema, F. Takens and B. J. L. Braaksma, Unfoldings and bifurcations of quasi-periodic tori, Mem. Amer. Math. Soc., 2012, 83(421), 1–175.

    Google Scholar

    [9] C. Corduneanu, Almost Periodic Functions, John Wiley & Sons, New York, 1968.

    Google Scholar

    [10] L. Corsi, R. Montalto and M. Procesi, Almost-periodic response solutions for a forced quasi-linear airy equation, Journal of Dynamics and Differential Equations, 2021, 33, 1231–1267. doi: 10.1007/s10884-020-09906-8

    CrossRef Google Scholar

    [11] A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Math., vol. 377, Springer-Verlag, Berlin, 1974.

    Google Scholar

    [12] H. Hanßmann, The quasi-periodic centre-saddle bifurcation, J. Differential Equations, 1998, 142(2), 305–370. doi: 10.1006/jdeq.1997.3365

    CrossRef Google Scholar

    [13] H. Hanßmann, Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems, Lecture Notes in Matematics, vol. 1893, Springer, Heidelberg, 2007.

    Google Scholar

    [14] P. Huang and X. Li, Persistence of invariant tori in integrable hamiltonian systems under almost periodic perturbations, Journal of Nonlinear Science, 2018, 28, 1865–1900. doi: 10.1007/s00332-018-9467-9

    CrossRef Google Scholar

    [15] P. Huang, X. Li and B. Liu, Invariant curves of almost periodic twist mappings, Journal of Dynamics and Differential Equations, 2022, 34(3), 1997–2033. doi: 10.1007/s10884-021-10033-1

    CrossRef Google Scholar

    [16] K. R. Meyer, Generic bifurcation of periodic points, Trans. Am. Math. Soc., 1970, 149, 95–107. doi: 10.1090/S0002-9947-1970-0259289-X

    CrossRef Google Scholar

    [17] K. R. Meyer, Generic bifurcation in Hamiltonian systems, Lecture Notes in Mathematics, New York, Springer, 1975, 62–70.

    Google Scholar

    [18] R. Montalto and M. Procesi, Linear Schrödinger equation with an almost periodic potential, SIAM Journal on Mathematical Analysis, 2021, 53(1), 386–434. doi: 10.1137/20M1320742

    CrossRef Google Scholar

    [19] J. Pöschel, Small divisors with spatial structure in infinite dimensional Hamiltonian systems, Commun. Math. Phys., 1990, 127, 351–393. doi: 10.1007/BF02096763

    CrossRef Google Scholar

    [20] W. Si and J. Si, Response solutions and quasi-periodic degenerate bifurcations for quasi-periodically forced systems, Nonlinearity, 2018, 31, 2361–2418. doi: 10.1088/1361-6544/aaa7b9

    CrossRef Google Scholar

    [21] W. Si, X. Xu and J. Si, Almost-periodic bifurcations for one-dimensional degenerate vector fields, Dynamical Systems, 2020, 35(2), 242–258. doi: 10.1080/14689367.2019.1665624

    CrossRef Google Scholar

    [22] F. Wagener, On the quasi-periodic d-fold degenerate bifurcation, J. Differential Equations, 2005, 216, 216–281.

    Google Scholar

    [23] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 1994, 36, 63–89.

    Google Scholar

    [24] Y. Yu, Y. Dong and X. Li, The existence of almost periodic response solutions for superlinear duffing's equations, Journal of Dynamics and Differential Equations, 2021. DOI: 10.1007/s10884-022-10131-8.

    CrossRef Google Scholar

Article Metrics

Article views(1315) PDF downloads(320) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint