Citation: | Xinyu Guan, Wen Si. ALMOST-PERIODIC BIFURCATIONS FOR 2-DIMENSIONAL DEGENERATE HAMILTONIAN VECTOR FIELDS[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3054-3073. doi: 10.11948/20220163 |
In this paper, we develop almost-periodic tori bifurcation theory for $ 2 $-dimensional degenerate Hamiltonian vector fields. With KAM theory and singularity theory, we show that the universal unfolding of completely degenerate Hamiltonian $ N(x, y)=x^2y+y^l $ and partially degenerate Hamiltonian $ M(x, y)=x^2+y^l, $ respectively, can persist under any small almost-periodic time-dependent perturbation and some appropriate non-resonant conditions on almost-periodic frequency $ \omega=(\cdots, \omega_i, \cdots)_{i\in \mathbb{Z}}\in \mathbb{R}^\mathbb{Z}. $ We extend the analysis about almost-periodic bifurcations of one-dimensional degenerate vector fields considered in [
[1] | L. Biasco, J. E. Massetti and M. Procesi, Almost periodic invariant tori for the NLS on the circle, Annales de l Institut Henri Poincare (C) Non Linear Analysis, 2021, 38(3), 711–758. doi: 10.1016/j.anihpc.2020.09.003 |
[2] | H. W. Broer, Quasi-Periodicity in Dissipative and Conservative Systems, Proceedings Symposium Henri Poincaré, Université Libre de Bruxelles, Solvay Institutes, 2004. |
[3] | H. W. Broer, S. N. Chow, Y. Kim and G. Vegter, The Hamiltonian double-zero eigenvalue, normal forms and homoclinic chaos, Waterloo 1992 (Fields Institute Communications) ed W. F. Langford and W. Nagata, vol. 4, 1–19. |
[4] | H. W. Broer, S. N. Chow, Y. Kim and G. Vegter, A normally elliptic Hamiltonian bifurcation, Z. Angew. Math. Phys., 1993, 44, 389–435. doi: 10.1007/BF00953660 |
[5] | H. W. Broer, H. Hanßmann and J. You, Bifurcations of normally parabolic in Hamiltonian systems, Nonlinearity, 2005, 18, 1735–1769. doi: 10.1088/0951-7715/18/4/018 |
[6] | H. W. Broer, H. Hanßmann and J. You, Umbilical torus bifurcations in Hamiltonian systems, J. Differential Equations, 2006, 222, 233–262. doi: 10.1016/j.jde.2005.06.030 |
[7] | H. W. Broer, G. B. Huitema and M. B. Sevryuk, Quasi-Periodic Motions in Families of Dynamical Systems, Lecture Notes in Matematics, vol. 1645, Springer, Heidelberg, 1996. |
[8] | H. W. Broer, G. B. Huitema, F. Takens and B. J. L. Braaksma, Unfoldings and bifurcations of quasi-periodic tori, Mem. Amer. Math. Soc., 2012, 83(421), 1–175. |
[9] | C. Corduneanu, Almost Periodic Functions, John Wiley & Sons, New York, 1968. |
[10] | L. Corsi, R. Montalto and M. Procesi, Almost-periodic response solutions for a forced quasi-linear airy equation, Journal of Dynamics and Differential Equations, 2021, 33, 1231–1267. doi: 10.1007/s10884-020-09906-8 |
[11] | A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Math., vol. 377, Springer-Verlag, Berlin, 1974. |
[12] | H. Hanßmann, The quasi-periodic centre-saddle bifurcation, J. Differential Equations, 1998, 142(2), 305–370. doi: 10.1006/jdeq.1997.3365 |
[13] | H. Hanßmann, Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems, Lecture Notes in Matematics, vol. 1893, Springer, Heidelberg, 2007. |
[14] | P. Huang and X. Li, Persistence of invariant tori in integrable hamiltonian systems under almost periodic perturbations, Journal of Nonlinear Science, 2018, 28, 1865–1900. doi: 10.1007/s00332-018-9467-9 |
[15] | P. Huang, X. Li and B. Liu, Invariant curves of almost periodic twist mappings, Journal of Dynamics and Differential Equations, 2022, 34(3), 1997–2033. doi: 10.1007/s10884-021-10033-1 |
[16] | K. R. Meyer, Generic bifurcation of periodic points, Trans. Am. Math. Soc., 1970, 149, 95–107. doi: 10.1090/S0002-9947-1970-0259289-X |
[17] | K. R. Meyer, Generic bifurcation in Hamiltonian systems, Lecture Notes in Mathematics, New York, Springer, 1975, 62–70. |
[18] | R. Montalto and M. Procesi, Linear Schrödinger equation with an almost periodic potential, SIAM Journal on Mathematical Analysis, 2021, 53(1), 386–434. doi: 10.1137/20M1320742 |
[19] | J. Pöschel, Small divisors with spatial structure in infinite dimensional Hamiltonian systems, Commun. Math. Phys., 1990, 127, 351–393. doi: 10.1007/BF02096763 |
[20] | W. Si and J. Si, Response solutions and quasi-periodic degenerate bifurcations for quasi-periodically forced systems, Nonlinearity, 2018, 31, 2361–2418. doi: 10.1088/1361-6544/aaa7b9 |
[21] | W. Si, X. Xu and J. Si, Almost-periodic bifurcations for one-dimensional degenerate vector fields, Dynamical Systems, 2020, 35(2), 242–258. doi: 10.1080/14689367.2019.1665624 |
[22] | F. Wagener, On the quasi-periodic d-fold degenerate bifurcation, J. Differential Equations, 2005, 216, 216–281. |
[23] | H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 1994, 36, 63–89. |
[24] | Y. Yu, Y. Dong and X. Li, The existence of almost periodic response solutions for superlinear duffing's equations, Journal of Dynamics and Differential Equations, 2021. DOI: 10.1007/s10884-022-10131-8. |