2023 Volume 13 Issue 6
Article Contents

Yingjie Cai, Yu Tian. MULTIPLE PERIODIC SOLUTIONS FOR SUPERQUADRATIC AND SUBQUADRATIC SECOND-ORDER HAMILTONIAN SYSTEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3074-3086. doi: 10.11948/20220256
Citation: Yingjie Cai, Yu Tian. MULTIPLE PERIODIC SOLUTIONS FOR SUPERQUADRATIC AND SUBQUADRATIC SECOND-ORDER HAMILTONIAN SYSTEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3074-3086. doi: 10.11948/20220256

MULTIPLE PERIODIC SOLUTIONS FOR SUPERQUADRATIC AND SUBQUADRATIC SECOND-ORDER HAMILTONIAN SYSTEMS

  • In this paper, a class of second-order Hamiltonian systems is studied. Under the assumptions of superquadratic and subquadratic for the nonlinear term, the existence of six periodic solutions and nine periodic solutions is obtained by using the variational method and space decomposition. Finally, two examples are given to verify the feasibility of the new criteria.

    MSC: 34A37, 40B05, 42A45
  • 加载中
  • [1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, Journal of Functional Analysis, 1973, 14, 349–381. doi: 10.1016/0022-1236(73)90051-7

    CrossRef Google Scholar

    [2] G. Bonanno, A. Iannizzotto and M. Marras, Two positive solutions for a mixed boundary value problem with the Sturm-Liouville operator, Journal Convex Analysis, 2018, 25, 421–434.

    Google Scholar

    [3] G. Bonanno and P. Candito, Nom-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, Journal of Difference Equations, 2018, 224, 3031–3059.

    Google Scholar

    [4] A. Capozzi, D. Fortunato and A. Salvatore, Periodic solutions of Lagrangian systems with bounded potential, Journal of Mathematical Analysis and Applications, 1987, 124, 482–494. doi: 10.1016/0022-247X(87)90009-6

    CrossRef Google Scholar

    [5] G. Fei, S. K. Kim and T. Wang, Periodic solutions of classical Hamiltonian systems without Palais-Smale condition, Journal of Mathematical Analysis and Applications, 2002, 267, 665–678. doi: 10.1006/jmaa.2001.7802

    CrossRef Google Scholar

    [6] M. Giradi and M. Matzeu, Solution of minimal period for a class of nonconvex Hamiltonian systems and applications to the fixed energy problem, Nonlinear Analysis Theory Methods and Applications, 1986, 10, 371–382. doi: 10.1016/0362-546X(86)90134-3

    CrossRef Google Scholar

    [7] R. Kazemi, Monotonicity of the ratio of two abelian integrals for a class of symmetric hyperelliptic Hamiltonian systems, Journal of Applied Analysis and Computation, 2018, 8, 344–355.

    Google Scholar

    [8] C. Li, Multiple minimal periodic solutions for subquadratic second-order Hamiltonian systems, Applied Mathematics Letters, 2021, 122, 107–500.

    Google Scholar

    [9] C. Li and C. Li, New Proofs of monotonicity of period function for cubic elliptic Hamiltonian, Journal of Nonlinear Modeling and Analysis, 2019, 1, 301–305.

    Google Scholar

    [10] H. Lian, P. Wang and W. Ge, Unbounded upper and lower solutions method for SturmšCLiouville boundary value problem on infinite intervals, Nonlinear Analysis: Theory, Methods and Applications, 2009, 70, 2627–2633. doi: 10.1016/j.na.2008.03.049

    CrossRef Google Scholar

    [11] Y. Long, Nonlinear oscillations for classical Hamiltonian systems with bi-even subquadratic potentials, Nonlinear Analysis, 1995, 24, 1665–1671. doi: 10.1016/0362-546X(94)00227-9

    CrossRef Google Scholar

    [12] Y. Long, The minimal period problem of periodic solutions for autonomous superquadratic second order Hamiltonian systems, Journal of Difference Equations, 1994, 111, 147–174. doi: 10.1006/jdeq.1994.1079

    CrossRef Google Scholar

    [13] Y. Long, The minimal period problem of classical Hamiltonian systems with even potentials, Annales de I'Institut Henri Poincaré, Analyse Non Linéaire, 1993, 10(6), 605–626. doi: 10.1016/s0294-1449(16)30199-8

    CrossRef Google Scholar

    [14] J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Springer-Verlag, New York, 1989.

    Google Scholar

    [15] P. Rabinowitz, Periodic solutions of Hamiltonian systems, Communications on Pure and Applied Mathematics, 1978, 31, 157–184. doi: 10.1002/cpa.3160310203

    CrossRef Google Scholar

    [16] C. Tang and X. Wu, Periodic solutions for a class of new superquadratic second order Hamiltonian systems, Applied Mathematics Letters, 2014, 34, 65–71. doi: 10.1016/j.aml.2014.04.001

    CrossRef Google Scholar

    [17] C. Tang and X. Wu, Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems, Journal of Difference Equations, 2010, 248, 660–692. doi: 10.1016/j.jde.2009.11.007

    CrossRef Google Scholar

    [18] Y. Tian and J. Henderson, Anti-periodic solutions for a gradient system with resonance via a variational approach, Mathematische Nachrichten, 2013, 286, 1537–1547. doi: 10.1002/mana.201200110

    CrossRef Google Scholar

    [19] Y. Tian and W. Ge, Periodic solutions for second-order Hamiltonian systems with the p-Laplacian, Electronic Journal of Differential Equations, 2006, 134.

    Google Scholar

    [20] L. Wan and C. Tang, Homoclinic orbits for a class of the second order Hamiltonian systems, Acta Mathematica Scientia, 2010, 30, 312–318. doi: 10.1016/S0252-9602(10)60047-1

    CrossRef Google Scholar

    [21] Y. Wang and J. Yan, A variational principle for contact Hamiltonian systems, Journal of Differential Equations, 2019, 267, 4047–4088. doi: 10.1016/j.jde.2019.04.031

    CrossRef Google Scholar

    [22] C. Yang and H. Sun, Friedrichs extensions of a class of singular Hamiltonian systems, Journal of Differential Equations, 2021, 293, 359–391. doi: 10.1016/j.jde.2021.05.034

    CrossRef Google Scholar

    [23] Y. Ye and C. Tang, Periodic and subharmonic solutions for a class of superquadratic second order Hamiltonian systems, Nonlinear Analysis, 2009, 71, 2298–2307. doi: 10.1016/j.na.2009.01.064

    CrossRef Google Scholar

    [24] D. Zhang, Symmetric period solutions with prescribed minimal period for even autonomous semipositive Hamiltonian systems, Science. China Math, 2014, 57, 81–96. doi: 10.1007/s11425-013-4598-9

    CrossRef Google Scholar

    [25] E. Zeidler, Nonlinear functional analysis and its applications, Germany: Springer, 1990.

    Google Scholar

    [26] F. Zhao and X. Wu, Saddle point reduction method for some non-autonomous second order systems, Journal of Mathematical Analysis and Applications, 2004, 291, 653–665. doi: 10.1016/j.jmaa.2003.11.019

    CrossRef Google Scholar

Article Metrics

Article views(1624) PDF downloads(288) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint