2022 Volume 12 Issue 3
Article Contents

Long Yan, Hongguo Xu, Weishi Liu. POISSON-NERNST-PLANCK MODELS FOR THREE ION SPECIES: MONOTONIC PROFILES VS. OSCILLATORY PROFILES[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 1211-1233. doi: 10.11948/20220195
Citation: Long Yan, Hongguo Xu, Weishi Liu. POISSON-NERNST-PLANCK MODELS FOR THREE ION SPECIES: MONOTONIC PROFILES VS. OSCILLATORY PROFILES[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 1211-1233. doi: 10.11948/20220195

POISSON-NERNST-PLANCK MODELS FOR THREE ION SPECIES: MONOTONIC PROFILES VS. OSCILLATORY PROFILES

  • Dedicated to Professor Jibin Li on the occasion of his 80th birthday.
  • Corresponding author: Email: wsliu@ku.edu (W. Liu)
  • We consider ionic flows through an ion channel via a quasi-one-dimensional classical Poisson-Nernst-Planck model. The specific biological setup involves ionic solutions with three ion species and the permanent charge is set to be zero. It is known that, for ionic flows with two ion species, the spatial profiles of the electric potential and the ion concentrations are monotonic, independent of boundary conditions. For ionic flows with three or more ion species with at least three different valences, depending on the boundary conditions, the profiles could be oscillatory. In this work, for ionic mixtures with two cation species of different valences and one anion species, we will provide a complete classification in terms of boundary conditions on when the profiles are monotonic and when they are oscillatory. This would be an important step for studies including nonzero permanent charges.

    MSC: 34A26, 34B16, 92C35
  • 加载中
  • [1] N. Abaid, R. S. Eisenberg and W. Liu, Asymptotic expansions of I-V relations via a Poisson-Nernst-Planck system, SIAM J. Appl. Dyn. Syst., 2008, 7, 1507–1526. doi: 10.1137/070691322

    CrossRef Google Scholar

    [2] V. Barcilon, D. Chen, R. S. Eisenberg and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation study, SIAM J. Appl. Math., 1997, 57, 631–648. doi: 10.1137/S0036139995312149

    CrossRef Google Scholar

    [3] P. Bates, Z. Wen and M. Zhang, Small permanent charge effects on individual fluxes via Poisson-Nernst-Planck models with multiple cations, J. Nonl. Sci., 2021, 31(3), Paper No. 55, 62 pp.

    Google Scholar

    [4] M. Bazant, K. Chu and B. Bayly, Current-Voltage relations for electrochemical thin films, SIAM J. Appl. Math., 2005, 65, 1463–1484. doi: 10.1137/040609938

    CrossRef Google Scholar

    [5] F. Bezanilla, The voltage sensor in voltage-dependent ion channels, Phys. Rev., 2000, 80, 555–592.

    Google Scholar

    [6] J. J. Bikerman, Structure and capacity of the electrical double layer, Philos. Mag., 1942, 33, 384–397. doi: 10.1080/14786444208520813

    CrossRef Google Scholar

    [7] D. Chen and R. S. Eisenberg, Charges, currents and potentials in ionic channels of one conformation, Biophys. J., 1993, 64, 1405–1421. doi: 10.1016/S0006-3495(93)81507-8

    CrossRef Google Scholar

    [8] R. S. Eisenberg, Ion channels as devices, J. Comp. Electro., 2003, 2, 245–249.

    Google Scholar

    [9] R. S. Eisenberg, Proteins, channels, and crowded ions, Biophys. Chem., 2003, 100, 507–517.

    Google Scholar

    [10] B. Eisenberg, Y. Hyon and C. Liu, Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids, J. Chem. Phys., 2010, 133, 104104(1–23).

    Google Scholar

    [11] B. Eisenberg and W. Liu, Poisson-Nernst-Planck systems for ion channels with permanent charges, SIAM J. Math. Anal., 2007, 38, 1932–1966. doi: 10.1137/060657480

    CrossRef Google Scholar

    [12] B. Eisenberg, W. Liu and H. Xu, Reversal permanent charge and reversal potential: Case studies via classical Poisson-Nernst-Planck models, Nonlinearity, 2015, 28, 103–128. doi: 10.1088/0951-7715/28/1/103

    CrossRef Google Scholar

    [13] D. Gillespie, W. Nonner and R. S. Eisenberg, Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux, J. Phys. : Condens. Matter, 2002, 14, 12129–12145. doi: 10.1088/0953-8984/14/46/317

    CrossRef Google Scholar

    [14] D. Gillespie, W. Nonner and R. S. Eisenberg, Density functional theory of charged, hard-sphere fluids, Phys. Rev. E, 2003, 68, 0313503(1–10).

    Google Scholar

    [15] B. Hille, Ion Channels of Excitable Membranes (3rd ed. ), Sinauer Associates Inc., 2001.

    Google Scholar

    [16] A. L. Hodgkin, The ionic basis of electrical activity in nerve and muscle, Biol. Rev., 1951, 26, 339–409. doi: 10.1111/j.1469-185X.1951.tb01204.x

    CrossRef Google Scholar

    [17] A. L. Hodgkin and A. F. Huxley, Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo, J. Physol., 1952, 116, 449–472.

    Google Scholar

    [18] A. L. Hodgkin, A. F. Huxley and B. Katz, Ionic currents underlying activity in the giant axon of the squid, Arch. Sci. Physiol., 1949, 3, 129–150.

    Google Scholar

    [19] A. L. Hodgkin and B. Katz, The effect of sodium ions on the electrical activity of the giant axon of the squid, J. Physiol., 1949, 108, 37–77.

    Google Scholar

    [20] W. Huang, W. Liu and Y. Yu, Permanent charge effects on ionic flow: A numerical study of flux ratios and their bifurcation, Commun. Comput. Phys., 2021, 30, 486–514. doi: 10.4208/cicp.OA-2020-0057

    CrossRef Google Scholar

    [21] Y. Hyon, B. Eisenberg and C. Liu, A mathematical model for the hard sphere repulsion in ionic solutions, Commun. Math. Sci., 2010, 9, 459–475.

    Google Scholar

    [22] W. Im, D. Beglov and B. Roux, Continuum solvation model: Electrostatic forces from numerical solutions to the Poisson-Boltzmann equation, Comp. Phys. Comm., 1998, 111, 59–75. doi: 10.1016/S0010-4655(98)00016-2

    CrossRef Google Scholar

    [23] S. Ji, B. Eisenberg and W. Liu, Flux ratios and channel structures, J. Dynam. Differential Equation, 2019, 31, 1141–1183. doi: 10.1007/s10884-017-9607-1

    CrossRef Google Scholar

    [24] S. Ji and W. Liu, Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: I-V relations and critical potentials. Part I: Analysis, J. Dynam. Differential Equations, 2012, 24, 955–983. doi: 10.1007/s10884-012-9277-y

    CrossRef Google Scholar

    [25] S. Ji, W. Liu and M. Zhang, Effects of (small) permanent charge and channel geometry on ionic flows via classical Poisson-Nernst-Planck models, SIAM J. Appl. Math., 2015, 75, 114–135. doi: 10.1137/140992527

    CrossRef Google Scholar

    [26] G. Lin, W. Liu, Y. Yi and M. Zhang, Poisson-Nernst-Planck systems for ion flow with a local hard-sphere potential for ion size effects, SIAM J. Appl. Dyn. Syst., 2013, 12, 1613–1648. doi: 10.1137/120904056

    CrossRef Google Scholar

    [27] W. Liu, Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems, SIAM J. Appl. Math., 2005, 65, 754–766. doi: 10.1137/S0036139903420931

    CrossRef Google Scholar

    [28] W. Liu, One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species, J. Differential Equations, 2009, 246, 428–451. doi: 10.1016/j.jde.2008.09.010

    CrossRef Google Scholar

    [29] W. Liu, A flux ratio and a universal property of permanent charges effects on fluxes, Comput. Math. Biophys., 2018, 6, 28–40. doi: 10.1515/cmb-2018-0003

    CrossRef Google Scholar

    [30] W. Liu, X. Tu and M. Zhang, Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: I-V relations and critical potentials. Part Ⅱ: Numerics, J. Dynam. Differential Equations, 2012, 24, 985–1004. doi: 10.1007/s10884-012-9278-x

    CrossRef Google Scholar

    [31] W. Liu and B. Wang, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels, J. Dynam. Differential Equations, 2010, 22, 413–437. doi: 10.1007/s10884-010-9186-x

    CrossRef Google Scholar

    [32] W. Liu and H. Xu, A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow, J. Differential Equations, 2015, 258, 1192–1228. doi: 10.1016/j.jde.2014.10.015

    CrossRef Google Scholar

    [33] H. Mofidi, B. Eisenberg and W. Liu, Effects of diffusion coefficients and permanent charge on reversal potentials in ionic channels, Entropy, 2020, 22, 325(1–23).

    Google Scholar

    [34] H. Mofidi and W. Liu, Reversal potential and reversal permanent charge with unequal diffusion coefficients via classical Poisson-Nernst-Planck models, SIAM J. Appl. Math., 2020, 80, 1908–1935. doi: 10.1137/19M1269105

    CrossRef Google Scholar

    [35] W. Nonner and R. S. Eisenberg, Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type Calcium channels, Biophysical J., 1998, 75, 1287–1305. doi: 10.1016/S0006-3495(98)74048-2

    CrossRef Google Scholar

    [36] Y. Rosenfeld, Free-energy model for the inhomogeneous hard-sphere fluid mixture and Density-Functional Theory of freezing, Phys. Rev. Lett., 1989, 63, 980–983. doi: 10.1103/PhysRevLett.63.980

    CrossRef Google Scholar

    [37] Y. Rosenfeld, Free energy model for the inhomogeneous fluid mixtures: Yukawa-charged hard spheres, general interactions, and plasmas, J. Chem. Phys., 1993, 98, 8126–8148. doi: 10.1063/1.464569

    CrossRef Google Scholar

    [38] I. Rubinstein, Multiple steady states in one-dimensional electrodiffusion with local electroneutrality, SIAM J. Appl. Math., 1987, 47, 1076–1093. doi: 10.1137/0147070

    CrossRef Google Scholar

    [39] I. Rubinstein, Electro-Diffusion of Ions, SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA, 1990.

    Google Scholar

    [40] B. Sakmann and E. Neher, Single Channel Recording (2nd ed. ), Plenum, 1995.

    Google Scholar

    [41] A. Singer and J. Norbury, A Poisson-Nernst-Planck model for biological ion channels–an asymptotic analysis in a three-dimensional narrow funnel, SIAM J. Appl. Math., 2009, 70, 949–968. doi: 10.1137/070687037

    CrossRef Google Scholar

    [42] A. Singer, D. Gillespie, J. Norbury and R. S. Eisenberg, Singular perturbation analysis of the steady-state Poisson-Nernst-Planck system: applications to ion channels, Eur. J. Appl. Math., 2008, 19, 541–560. doi: 10.1017/S0956792508007596

    CrossRef Google Scholar

    [43] L. Sun and W. Liu, Non-localness of excess potentials and boundary value problems of Poisson-Nernst-Planck systems for ionic flow: A case study, J. Dynam. Differential Equations, 2018, 30, 779–797. doi: 10.1007/s10884-017-9578-2

    CrossRef Google Scholar

    [44] N. Sun and W. Liu, Flux ratios for effects of permanent charges on ionic flows with three ion species: New phenomena from a case study, J. Dynam. Differential Equations, 2022. https://doi.org/10.1007/s10884-021-10118-x. doi: 10.1007/s10884-021-10118-x

    CrossRef Google Scholar

    [45] H. H. Ussing, Interpretation of the exchange of radio-sodium in isolated muscle, Nature, 1947, 160, 262–263. doi: 10.1038/160262a0

    CrossRef Google Scholar

    [46] X. Wang, D. He, J. Wylie and H. Huang, Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems, Phys. Rev. E, 2014, 89, 022722(1–14).

    Google Scholar

    [47] L. Zhang, B. Eisenberg and W. Liu, An effect of large permanent charge: Decreasing flux with increasing transmembrane potential, Eur. Phys. J. Special Topics, 2019, 227, 2575–2601. doi: 10.1140/epjst/e2019-700134-7

    CrossRef Google Scholar

    [48] L. Zhang and W. Liu, Effects of large permanent charges on ionic flows via Poisson-Nernst-Planck models, SIAM J. Appl. Dyn. Syst., 2020, 19, 1993–2029. doi: 10.1137/19M1289443

    CrossRef Google Scholar

    [49] M. Zhang, Asymptotic expansions and numerical simulations of I-V relations via a steady-state Poisson-Nernst-Planck system, Rocky Mountain J. Math., 2015, 45, 1681–1708.

    Google Scholar

    [50] Q. Zheng and G. Wei, Poisson-Boltzmann-Nernst-Planck model, J. Chem. Phys., 2011, 134, 194101(1–17).

    Google Scholar

Figures(9)

Article Metrics

Article views(2316) PDF downloads(335) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint