2022 Volume 12 Issue 3
Article Contents

Fu Feng, Jianping Shi, Hui Fang. HOPF BIFURCATION OF A FRACTIONAL-ORDER PREY-PREDATOR-SCAVENGER SYSTEM WITH HUNTING DELAY AND COMPETITION DELAY[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 1234-1258. doi: 10.11948/20220253
Citation: Fu Feng, Jianping Shi, Hui Fang. HOPF BIFURCATION OF A FRACTIONAL-ORDER PREY-PREDATOR-SCAVENGER SYSTEM WITH HUNTING DELAY AND COMPETITION DELAY[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 1234-1258. doi: 10.11948/20220253

HOPF BIFURCATION OF A FRACTIONAL-ORDER PREY-PREDATOR-SCAVENGER SYSTEM WITH HUNTING DELAY AND COMPETITION DELAY

  • Dedicated to Professor Jibin Li on the occasion of his 80th birthday.
  • Corresponding author: Email: sjp0207@163.com(J. Shi) 
  • Fund Project: The authors were supported by the National Natural Science Foundation of China (Nos. 11561034, 11761040)
  • This paper deals with Hopf bifurcation of a fractional-order prey-predator-scavenger system (FPSS in short) with hunting delay and two-predator competition delay. We introduce the notion of Hopf bifurcation of fractional-order system with double delays. The characteristic equation of the linearized system of FPSS is obtained by using the method of linearization and Laplace transform. Choosing the hunting delay and the competition delay as bifurcation parameters, respectively, we obtain the stability switch conditions and the critical delay values of emergence of Hopf bifurcation by analyzing the characteristic equation of the linearized system around a coexistence equilibrium. Especially, the delay bifurcation curve of emergence of Hopf bifurcation for FPSS with nonzero double delays is determined. Numerical simulations are performed to further illustrate our theoretical results.

    MSC: 34A08, 37G15
  • 加载中
  • [1] W. Abid, R. Yafia, M.A. Aziz-Alaoui, H. Bouhafa, A. Abichou, Diffusion driven instability and Hopf bifurcation in spatial predator-prey model on a circular domain, Appl. Math. Comput., 2015, 1(2015), 292–313.

    Google Scholar

    [2] H. N. Agiza, et al. Chaotic dynamics of a discrete prey-predator model with Holling type Ⅱ, Nonlinear Anal-real, 2009, 10(1), 116–129. doi: 10.1016/j.nonrwa.2007.08.029

    CrossRef Google Scholar

    [3] E. Ahmed, A. M. A. El-Sayed, et al., Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, J. Math. Anal. Appl., 2007, 325(1), 542–553. doi: 10.1016/j.jmaa.2006.01.087

    CrossRef Google Scholar

    [4] J. Alidoust, Stability and bifurcation analysis for a fractional prey-predator scavenger model, Appl. Math. Model., 2020, 81(5), 342–355.

    Google Scholar

    [5] E. Ahmed, A. El-ssyed, H. EL-saka, On some Routh-Hurwitz conditions for fractional order differential equations and their applications in LORENZ, RSSLER, CHUA and CHEN systems, Phys. Lett. A, 2006, 358(1), 1–4. doi: 10.1016/j.physleta.2006.04.087

    CrossRef Google Scholar

    [6] S. Boonrangsiman, K. Bunwong, E. J. Moore, A bifurcation path to chaos in a time-delay fisheries predator-prey model with prey consumption by immature and mature predators, Math. Comput. Simulat., 2016, 124(2016), 16–29.

    Google Scholar

    [7] J. Banasiak, M. S. S. Tchamga, Delayed stability switches in singularly perturbed predator-prey models, Nonlinear Anal., 2017, 35(2017), 312–335.

    Google Scholar

    [8] Y. Du, J. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment, Nonlinear Dynam. Evol. Equa., 2006. DOI: 10.1090/fic/048/05.

    CrossRef Google Scholar

    [9] K. Das, T. K. Kar, Dynamical Analysis of an Exploited Prey-Predator System in Fuzzy Environment, Int. J. Ecol. Econ. Stat., 2020, 41(2).

    Google Scholar

    [10] U. Das, T. K. Kar, S. Jana, Dynamical behaviour of a delayed stage-structured predator-prey model with nonmonotonic functional response, Int. J. Dynam. Control, 2015, 3, 225–238. doi: 10.1007/s40435-014-0110-9

    CrossRef Google Scholar

    [11] W. Deng, C. Li, J. Lu, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dynam., 2006, 48(4), 409–416.

    Google Scholar

    [12] A. A. Elsadany, A. E. Matouk, Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization, J. Appl. Math. Comput., 2015, 49(2015), 269–283.

    Google Scholar

    [13] S. F. Gilbert, Aphid suitability and its relationship to oviposition preference in predatory hoverflies, J. Anim. Ecol., 2000, 69(5), 771–784. doi: 10.1046/j.1365-2656.2000.00433.x

    CrossRef Google Scholar

    [14] S. Gakkhar, R. K. Naji, Chaos in seasonally perturbed ratio-dependent prey-predator system, Chaos. Solitons. Fract, 2003, 15(1), 107–118. doi: 10.1016/S0960-0779(02)00114-5

    CrossRef Google Scholar

    [15] Y. Huang, L. Zhang, S. Fang, Coexistence of a strongly coupled prey-predator model for Holling type Ⅲ, Chinese Quarterly Journal of Mathematics, 2009, 24(3), 389–393.

    Google Scholar

    [16] C. Huang, J. Cao, X. Min, et al., Controlling bifurcation in a delayed fractional predator-prey system with incommensurate orders, Appl. Math. Comput., 2017, 293(C), 293–310.

    Google Scholar

    [17] D. Kai, The Analysis of Fractional Differential Equations. Springer Berlin Heidelberg, 2010.

    Google Scholar

    [18] D. Kai, N. J. Ford, A. D. Freed, A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations, Nonlinear Dynam., 2002, 29(1–4), 3–22.

    Google Scholar

    [19] H, Li, C. Huang, T. Li, Dynamic complexity of a fractional-order predator-prey system with double delays, Physica A, 2019, 526.

    Google Scholar

    [20] X. Liu, H. Fang, Periodic pulse control of Hopf bifurcation in a fractional-order delay predator-prey model incorporating a prey refuge, Adv. Differ. Equ-NY, 2019, 2019(1). DOI: 10.1186/s13662-019-2413-9.

    CrossRef Google Scholar

    [21] P. S. Mandal, M. Banerjee, Stochastic persistence and stationary distribution in a Holling-Tanner type prey-predator model, Physica A, 2012, 391(4), 1216–1233. doi: 10.1016/j.physa.2011.10.019

    CrossRef Google Scholar

    [22] A. Matsumoto, F. Szidarovszky, Stability switching curves in a Lotka-Volterra competition system with two delays, Math. Comput. Simulat., 2020, 178(C), 422–438.

    Google Scholar

    [23] X. Min, G. Jiang, J. Cao, et al., Local Bifurcation Analysis of a Delayed Fractional-Order Dynamic Model of Dual Congestion Control Algorithms, IEEE/CAA J. Auto. Sini., 2017, 99(2017), 361–369.

    Google Scholar

    [24] I. Petras, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Higher Education Press, Beijing and Springer-Verlag, Berlin Heidelberg, 2011.

    Google Scholar

    [25] P. Panja, Stability and dynamics of a fractional-order three-species predator-prey model, Theor. Biosci., 2019, 138, 251–259. doi: 10.1007/s12064-019-00291-5

    CrossRef Google Scholar

    [26] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Math. Sci. Eng., 2013, 2013(3), 553–563.

    Google Scholar

    [27] M. Rivero, J. J. Trujillo, L. Vzquez, M. P. Velasco, Fractional dynamics of population, Appl. Math. Comput., 2011, 218, 1089–1095. doi: 10.1016/j.amc.2011.03.017

    CrossRef Google Scholar

    [28] F. A. Rihan, S. Lakshmanan, A. H. Hashish, et al, Fractional-order delayed predator-prey systems with Holling type-Ⅱ functional response, Nonlinear Dynam., 2015, 80(2), 777–789.

    Google Scholar

    [29] H. A. Satar, R. K. Naji, Stability and Bifurcation of a Prey-Predator-Scavenger Model in the Existence of Toxicant and Harvesting, Int. J. Math. Math. Sci., 2019, 1–17.

    Google Scholar

    [30] P. Song, H. Y. Zhao, X. B. Zhang, Dynamic analysis of a fractional order delayed predator-prey system with harvesting, Theor. Biosci., 2016, 135(2016), 1–14.

    Google Scholar

    [31] H. A. Satar, R. K. Naji, Stability and Bifurcation of a Prey-Predator-Scavenger Model in the Existence of Toxicant and Harvesting, Int. J. Math. Math. Sci., 2019. DOI: 10.1155/2019/1573516.

    CrossRef Google Scholar

    [32] X. Wang, W. Wang, Y. Lin, et al., The dynamical complexity of an impulsive Watt-type prey-predator system, Chaos. Solitons. Fract., 2009, 40(2), 731–744. doi: 10.1016/j.chaos.2007.08.019

    CrossRef Google Scholar

    [33] B. J. West, Colloquium: Fractional calculus view of complexity: A tutorial, Rev. mod. Phys., 2014, 86(4), 1169–1186. doi: 10.1103/RevModPhys.86.1169

    CrossRef Google Scholar

Figures(12)  /  Tables(2)

Article Metrics

Article views(2420) PDF downloads(547) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint