2022 Volume 12 Issue 3
Article Contents

Zongguang Li, Zhengrong Liu. ELLIPTIC SINGULAR WAVE SOLUTIONS AND THEIR LIMITS OF A SIMPLE EQUATION[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 1195-1210. doi: 10.11948/20220193
Citation: Zongguang Li, Zhengrong Liu. ELLIPTIC SINGULAR WAVE SOLUTIONS AND THEIR LIMITS OF A SIMPLE EQUATION[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 1195-1210. doi: 10.11948/20220193

ELLIPTIC SINGULAR WAVE SOLUTIONS AND THEIR LIMITS OF A SIMPLE EQUATION

  • Dedicated to Professor Jibin Li on the occasion of his 80th birthday.
  • Corresponding author: Email: liuzhr@scut.edu.cn(Z. Liu)
  • Fund Project: Research is supported by the National Natural Science Foundation of China (No. 11971176)
  • In this pager, we study the elliptic singular wave solutions of the equation $ u_t+2ku_x-u_{xxt}+u^2u_x-uu_{xxx}=0 $ which has been investigated in some literatures. Firstly, for given wave speeds $ c_1=\frac{1}{2}(1+\sqrt{1-8k}) $ or $ c_2=\frac{1}{2}(1-\sqrt{1-8k}) $, we show that there exist four types of elliptic singular wave solutions, two types of elliptic sine singular wave solutions and two types of elliptic cosine singular wave solutions. Secondly, we confirm that their limits are four types of other solutions, hyperbolic smooth solitary wave solutions, hyperbolic singular wave solutions, fractional singular wave solution and trigonometric singular wave solutions. Our works extend some previous results.

    MSC: 34A20, 34C35, 35B65, 58F05, 76B25
  • 加载中
  • [1] Y. Chen, W. Ye and R. Liu, The explicit periodic wave solutions and their limit forms for a generalized b-equation, Acta Mathe. Appl. Sinica, 2016, 32(2), 513–528. doi: 10.1007/s10255-016-0581-x

    CrossRef Google Scholar

    [2] A. Daros and L. K. Arruda, On the instability of elliptic traveling wave solutions of the modified Camassa-Holm equation, J. Diff. Eqs., 2019, 266, 1946–1968. doi: 10.1016/j.jde.2018.08.017

    CrossRef Google Scholar

    [3] B. He, W. Rui, C. Chen, et al., Exact travelling wave solutions for a generalized Camassa-Holm equation using the integral bifurcation method, Appl. Math. Comput., 2008, 206, 141–149.

    Google Scholar

    [4] S. A. Khuri, New ansatz for obtaining wave solutions of the generalized Camassa-Holm equation, Chaos Solit. Fract., 2005, 25, 705–710. doi: 10.1016/j.chaos.2004.11.083

    CrossRef Google Scholar

    [5] J. Li and Z. Liu, Smooth and non-smooth traveling waves in a nonlinearly dispersive equation, Applied Mathematical Modelling, 2000, 25, 41–56. doi: 10.1016/S0307-904X(00)00031-7

    CrossRef Google Scholar

    [6] J. Li and Z. Liu, Traveling wave solutions for a class of nonlinear dispersive equations, Chin. Ann. of Math., 2002, 23B(3), 397–418.

    Google Scholar

    [7] Z. Li and R. Liu, Bifurcations and exact solutions in a nonlinear wave equation, Int. J. Bifurcation and Chaos, 2019, 29(7), 1950098. doi: 10.1142/S0218127419500986

    CrossRef Google Scholar

    [8] Z. Li and R. Liu, Blow-up solutions for a case of b-family equations, Acta Math. Scientia, 2020, 40(4), 910–920. doi: 10.1007/s10473-020-0402-4

    CrossRef Google Scholar

    [9] R. Liu, Coexistence of multifarious exact nonlinear wave solutions for generalized b-equation, Int. J. Bifurcation and Chaos, 2010, 20, 3193–3208. doi: 10.1142/S0218127410027623

    CrossRef Google Scholar

    [10] Z. Liu and Y. Liang, The explicit nonlinear wave solutions and their bifurcations of the generalized Camassa-Holm equation, Int. J. Bifurcation and Chaos, 2011, 21(11), 3119–3136. doi: 10.1142/S0218127411030556

    CrossRef Google Scholar

    [11] J. Shen and W. Xu, Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation, Chaos Solit. Fract., 2005, 26, 1149–1162. doi: 10.1016/j.chaos.2005.02.021

    CrossRef Google Scholar

    [12] L. Tian and X. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation, Chaos Solit. Fract., 2004, 21, 621–637.

    Google Scholar

    [13] Q. Wang and M. Tang, New exact solutions for two nonlinear equations, Phys. Lett. A, 2008, 372, 2995–3000. doi: 10.1016/j.physleta.2008.01.012

    CrossRef Google Scholar

    [14] A. M. Wazwaz, Solitary wave solutions for modified forms of Degasperis-Procesi and Camassa-Holm equations, Phys. Lett. A, 2006, 352, 500–504. doi: 10.1016/j.physleta.2005.12.036

    CrossRef Google Scholar

    [15] A. M. Wazwaz, New solitary wave solutions to the modified forms of Degasperis-Procesi and Camassa-Holm equations, Appl. Math. Comput., 2007, 186, 130–141.

    Google Scholar

    [16] J. Yang, R. Liu and Y. Chen, Bifurcations of solitary waves of a simple equation, Int. J. Bifurcation and Chaos, 2020, 30(9), 2050138. doi: 10.1142/S0218127420501382

    CrossRef Google Scholar

    [17] E. Yomba, The sub-ODE method for finding exact travelling wave solutions of generalized nonlinear Camassa-Holm, and generalized nonlinear Schrodinger equations, Phys. Lett. A, 2008, 372, 215–222. doi: 10.1016/j.physleta.2007.03.008

    CrossRef Google Scholar

    [18] E. Yomba, A generalized auxiliary equation method and its application to nonlinear Klein-Gordon and generalized nonlinear Camassa-Holm equations, Phys. Lett. A, 2008, 372, 1048–1060. doi: 10.1016/j.physleta.2007.09.003

    CrossRef Google Scholar

Figures(6)

Article Metrics

Article views(2092) PDF downloads(289) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint