Citation: | Qinlong Wang, Wenyu Li, Wentao Huang. LINEAR RECURSION FORMULAS OF GENERALIZED FOCUS QUANTITIES AND LOCAL INTEGRABILITY FOR A CLASS OF THREE-DIMENSIONAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 1186-1194. doi: 10.11948/20220178 |
In this paper, the local integrability of a class of three-dimensional systems is studied. The recursive formulas to compute the generalized focus quantities of the system are deduced firstly, then they are applied to a Lotka-Volterra system. The integrable conditions of the system are obtained and the local integrability is solved completely. The algorithm corresponding to the above formulas is an extension and development of the power series method for the planar differential systems with $ p:-q $ arbitrary resonant saddle point and also readily done with using computer algebra system such as Mathematica or Maple.
[1] | W. Aziz and C. Christopher, Local integrability and linearizability of three-dimensional Lotka-Volterra systems, Applied Mathematics and Computation, 2012, 219, 4067–4081. doi: 10.1016/j.amc.2012.10.051 |
[2] | Y. N. Bibikov, Local Theory of Nonlinear Analytic Ordinary Differential Equations, Lecture Notes in Math., Springer-Verlag, New York, 1979, 702. |
[3] | M. Bobienski and H. Zoladek, The three-dimensional generalized Lotka-Volterra systems, Ergodic Theory Dynam. Syst., 2005, 25, 759–791. doi: 10.1017/S0143385704000902 |
[4] | L. Cairó, Darboux first integral conditions and integrability of the 3D Lotka-Volterra system, J. Nonlinear Math. Phys., 2000, 7(4), 511–531. doi: 10.2991/jnmp.2000.7.4.8 |
[5] | L. Cairó and J. Llibre, Darboux integrability for 3D Lotka-Volterra systems, J. Phys. A: Math. Gen., 2000, 33(12), 2395–2406. doi: 10.1088/0305-4470/33/12/307 |
[6] | X. Chen, J. Giné, V. G. Romanovski and D. S. Shafer, The 1: -q resonant center problem for certain cubic Lotka-Volterra systems, Applied Mathematics and Computation, 2012, 218, 11620–11633. doi: 10.1016/j.amc.2012.05.045 |
[7] | C. Christopher and J. Giné, Analytic integrability of certain resonant saddle, Chaos, Solitons & Fractals, 2021, 146, 110821. |
[8] | C. Christopher, P. Mardešic and C. Rousseau, Normalizable, integrable, and linearizable saddle points for complex quadratic systems in C2, Journal of Dynamical and Control Systems, 2003, 9, 311–363. doi: 10.1023/A:1024643521094 |
[9] | C. Christopher and C. Rousseau, Normalizable, integrable and linearizable saddle points in the lotka-volterra system, Qualitative Theory of Dynamical Systems, 2004, 5, 11–61. doi: 10.1007/BF02968129 |
[10] | G. Dong, C. Liu and J. Yang, The complexity of generalized center problem, Qualitative Theory of Dynamical Systems, 2015, 14(1), 11–23. doi: 10.1007/s12346-015-0131-6 |
[11] | H. Dulac, Détermination et intégration d'une certaine classe d'équations différentielles ayant pour point singulier un cente, Bull. Sci. Math., 1908, 32(2), 230–252. |
[12] | A. Fronville, A. Sadovski and H. Zoladek, Solution of the 1: -2 resonant centre problem in the quadratic case, Fund. Math., 1998, 157, 191–207. doi: 10.4064/fm-157-2-3-191-207 |
[13] | J. Giné and V. G. Romanovski, Integrability conditions for Lotka-Volterra plannar complex quintic systems, Nonlinear Anal. : Real World Appl., 2010, 11, 2100–2105. doi: 10.1016/j.nonrwa.2009.06.002 |
[14] | S. Gravel and P. Thibault, Integrability and linearizability of the Lotka-Volterra System with a saddle point with rational hyperbolicity ratio, J. Diff. Eqs., 2002, 184, 20–47. doi: 10.1006/jdeq.2001.4128 |
[15] | Z. Hu, V. G. Romanovski and D. S. Shafer, 1: -3 resonant centers on C2 with homogeneous cubic nonlinearities, Comput. Math. Appl., 2008, 56(8), 1927–1940. doi: 10.1016/j.camwa.2008.04.009 |
[16] | F. Li, Y. Liu, Y. Liu and P. Yu, Complex isochronous centers and linearization transformations for cubic Z2 equivariant planar systems, J. Diff. Eqs., 2020, 268, 3819–3847. doi: 10.1016/j.jde.2019.10.011 |
[17] | F. Li, Y. Liu, P. Yu and J. Wang, Complex integrability and linearizability of cubic Z2 systems with two 1: q resonant singular points, J. Diff. Eqs., 2021, 300, 786–813. doi: 10.1016/j.jde.2021.08.015 |
[18] | C. Liu, G. Chen and C. Li, Integrability and linearizability of the Lotka-Volterra systems, J. Diff. Eqs., 2004, 198, 301–320. doi: 10.1016/S0022-0396(03)00196-7 |
[19] | V. G. Romanovski and D. S. Shafer, On the center problem for p: -q resonant polynomial vector fields, Bull. Belg. Math. Soc. Simon Stevin, 2008, 15(5), 871–887. |
[20] | V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach, Birkhäuser, Boston, 2009. |
[21] | Q. Wang and W. Huang, Integrability and linearizability for Lotka-Volterra systems with the 3 : -q resonant saddle point, Advances in Difference Equations, 2014, 23, 1–15. |
[22] | Q. Wang, W. Huang and H. Wu, Linear recursion formulas of generalized focus quantities and applications, Applied Mathematics and Computation, 2013, 219, 5233–5240. doi: 10.1016/j.amc.2012.11.031 |
[23] | Q. Wang and Y. Liu, Linearizability of the polynomial differential systems with a resonant singular point, Bull. Sci. Math., 2008, 132, 97–111. doi: 10.1016/j.bulsci.2006.07.005 |
[24] | Q. Wang and Y. Liu, Generalized isochronous centers for complex systems, Acta Math. Sin., 2010, 26, 1779–1792. doi: 10.1007/s10114-010-7535-7 |
[25] | P. Xiao, Critical point quantities and integrability conditions for complex planar resonant polynomial differential systems, Ph. D. Thesis, Central South University, China, 2005. |
[26] | H. Zoladek, The problem of center for resonant singular points of polynomial vector fields, J. Diff. Eqs., 1997, 137, 94–118. doi: 10.1006/jdeq.1997.3260 |