2022 Volume 12 Issue 3
Article Contents

Qinlong Wang, Wenyu Li, Wentao Huang. LINEAR RECURSION FORMULAS OF GENERALIZED FOCUS QUANTITIES AND LOCAL INTEGRABILITY FOR A CLASS OF THREE-DIMENSIONAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 1186-1194. doi: 10.11948/20220178
Citation: Qinlong Wang, Wenyu Li, Wentao Huang. LINEAR RECURSION FORMULAS OF GENERALIZED FOCUS QUANTITIES AND LOCAL INTEGRABILITY FOR A CLASS OF THREE-DIMENSIONAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 1186-1194. doi: 10.11948/20220178

LINEAR RECURSION FORMULAS OF GENERALIZED FOCUS QUANTITIES AND LOCAL INTEGRABILITY FOR A CLASS OF THREE-DIMENSIONAL SYSTEMS

  • Dedicated to Professor Jibin Li on the occasion of his 80th birthday.
  • Corresponding author: Email: huangwentao@163.com(W. Huang)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (12061016, 12161023) and Nature Science Foundation of Guangxi (2020GXNSFAA159138), and Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation
  • In this paper, the local integrability of a class of three-dimensional systems is studied. The recursive formulas to compute the generalized focus quantities of the system are deduced firstly, then they are applied to a Lotka-Volterra system. The integrable conditions of the system are obtained and the local integrability is solved completely. The algorithm corresponding to the above formulas is an extension and development of the power series method for the planar differential systems with $ p:-q $ arbitrary resonant saddle point and also readily done with using computer algebra system such as Mathematica or Maple.

    MSC: 34C
  • 加载中
  • [1] W. Aziz and C. Christopher, Local integrability and linearizability of three-dimensional Lotka-Volterra systems, Applied Mathematics and Computation, 2012, 219, 4067–4081. doi: 10.1016/j.amc.2012.10.051

    CrossRef Google Scholar

    [2] Y. N. Bibikov, Local Theory of Nonlinear Analytic Ordinary Differential Equations, Lecture Notes in Math., Springer-Verlag, New York, 1979, 702.

    Google Scholar

    [3] M. Bobienski and H. Zoladek, The three-dimensional generalized Lotka-Volterra systems, Ergodic Theory Dynam. Syst., 2005, 25, 759–791. doi: 10.1017/S0143385704000902

    CrossRef Google Scholar

    [4] L. Cairó, Darboux first integral conditions and integrability of the 3D Lotka-Volterra system, J. Nonlinear Math. Phys., 2000, 7(4), 511–531. doi: 10.2991/jnmp.2000.7.4.8

    CrossRef Google Scholar

    [5] L. Cairó and J. Llibre, Darboux integrability for 3D Lotka-Volterra systems, J. Phys. A: Math. Gen., 2000, 33(12), 2395–2406. doi: 10.1088/0305-4470/33/12/307

    CrossRef Google Scholar

    [6] X. Chen, J. Giné, V. G. Romanovski and D. S. Shafer, The 1: -q resonant center problem for certain cubic Lotka-Volterra systems, Applied Mathematics and Computation, 2012, 218, 11620–11633. doi: 10.1016/j.amc.2012.05.045

    CrossRef Google Scholar

    [7] C. Christopher and J. Giné, Analytic integrability of certain resonant saddle, Chaos, Solitons & Fractals, 2021, 146, 110821.

    Google Scholar

    [8] C. Christopher, P. Mardešic and C. Rousseau, Normalizable, integrable, and linearizable saddle points for complex quadratic systems in C2, Journal of Dynamical and Control Systems, 2003, 9, 311–363. doi: 10.1023/A:1024643521094

    CrossRef Google Scholar

    [9] C. Christopher and C. Rousseau, Normalizable, integrable and linearizable saddle points in the lotka-volterra system, Qualitative Theory of Dynamical Systems, 2004, 5, 11–61. doi: 10.1007/BF02968129

    CrossRef Google Scholar

    [10] G. Dong, C. Liu and J. Yang, The complexity of generalized center problem, Qualitative Theory of Dynamical Systems, 2015, 14(1), 11–23. doi: 10.1007/s12346-015-0131-6

    CrossRef Google Scholar

    [11] H. Dulac, Détermination et intégration d'une certaine classe d'équations différentielles ayant pour point singulier un cente, Bull. Sci. Math., 1908, 32(2), 230–252.

    Google Scholar

    [12] A. Fronville, A. Sadovski and H. Zoladek, Solution of the 1: -2 resonant centre problem in the quadratic case, Fund. Math., 1998, 157, 191–207. doi: 10.4064/fm-157-2-3-191-207

    CrossRef Google Scholar

    [13] J. Giné and V. G. Romanovski, Integrability conditions for Lotka-Volterra plannar complex quintic systems, Nonlinear Anal. : Real World Appl., 2010, 11, 2100–2105. doi: 10.1016/j.nonrwa.2009.06.002

    CrossRef Google Scholar

    [14] S. Gravel and P. Thibault, Integrability and linearizability of the Lotka-Volterra System with a saddle point with rational hyperbolicity ratio, J. Diff. Eqs., 2002, 184, 20–47. doi: 10.1006/jdeq.2001.4128

    CrossRef Google Scholar

    [15] Z. Hu, V. G. Romanovski and D. S. Shafer, 1: -3 resonant centers on C2 with homogeneous cubic nonlinearities, Comput. Math. Appl., 2008, 56(8), 1927–1940. doi: 10.1016/j.camwa.2008.04.009

    CrossRef Google Scholar

    [16] F. Li, Y. Liu, Y. Liu and P. Yu, Complex isochronous centers and linearization transformations for cubic Z2 equivariant planar systems, J. Diff. Eqs., 2020, 268, 3819–3847. doi: 10.1016/j.jde.2019.10.011

    CrossRef Google Scholar

    [17] F. Li, Y. Liu, P. Yu and J. Wang, Complex integrability and linearizability of cubic Z2 systems with two 1: q resonant singular points, J. Diff. Eqs., 2021, 300, 786–813. doi: 10.1016/j.jde.2021.08.015

    CrossRef Google Scholar

    [18] C. Liu, G. Chen and C. Li, Integrability and linearizability of the Lotka-Volterra systems, J. Diff. Eqs., 2004, 198, 301–320. doi: 10.1016/S0022-0396(03)00196-7

    CrossRef Google Scholar

    [19] V. G. Romanovski and D. S. Shafer, On the center problem for p: -q resonant polynomial vector fields, Bull. Belg. Math. Soc. Simon Stevin, 2008, 15(5), 871–887.

    Google Scholar

    [20] V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach, Birkhäuser, Boston, 2009.

    Google Scholar

    [21] Q. Wang and W. Huang, Integrability and linearizability for Lotka-Volterra systems with the 3 : -q resonant saddle point, Advances in Difference Equations, 2014, 23, 1–15.

    Google Scholar

    [22] Q. Wang, W. Huang and H. Wu, Linear recursion formulas of generalized focus quantities and applications, Applied Mathematics and Computation, 2013, 219, 5233–5240. doi: 10.1016/j.amc.2012.11.031

    CrossRef Google Scholar

    [23] Q. Wang and Y. Liu, Linearizability of the polynomial differential systems with a resonant singular point, Bull. Sci. Math., 2008, 132, 97–111. doi: 10.1016/j.bulsci.2006.07.005

    CrossRef Google Scholar

    [24] Q. Wang and Y. Liu, Generalized isochronous centers for complex systems, Acta Math. Sin., 2010, 26, 1779–1792. doi: 10.1007/s10114-010-7535-7

    CrossRef Google Scholar

    [25] P. Xiao, Critical point quantities and integrability conditions for complex planar resonant polynomial differential systems, Ph. D. Thesis, Central South University, China, 2005.

    Google Scholar

    [26] H. Zoladek, The problem of center for resonant singular points of polynomial vector fields, J. Diff. Eqs., 1997, 137, 94–118. doi: 10.1006/jdeq.1997.3260

    CrossRef Google Scholar

Article Metrics

Article views(2221) PDF downloads(431) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint