2024 Volume 14 Issue 1
Article Contents

Jian-Gen Liu, Xiao-Jun Yang, Yi-Ying Feng, Lu-Lu Geng. INVARIANT ANALYSIS AND CONSERVATION LAWS FOR THE SPACE-TIME FRACTIONAL KDV-LIKE EQUATION[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 1-15. doi: 10.11948/20220202
Citation: Jian-Gen Liu, Xiao-Jun Yang, Yi-Ying Feng, Lu-Lu Geng. INVARIANT ANALYSIS AND CONSERVATION LAWS FOR THE SPACE-TIME FRACTIONAL KDV-LIKE EQUATION[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 1-15. doi: 10.11948/20220202

INVARIANT ANALYSIS AND CONSERVATION LAWS FOR THE SPACE-TIME FRACTIONAL KDV-LIKE EQUATION

  • Fractional calculus plays an essential role in describing nonlinear phenomena appears in applied sciences. In this article, we handle mainly the Korteweg-de Vries (KdV)-like equation which can be used to depicted the shallow water waves evolution mechanism in the sense of the space-time fractional derivative of the Riemann-Liouville. Firstly, on the basis of the Lie symmetry analysis technology, the symmetry of this considered model was constructed. Then, this equation can be changed into a fractional ordinary differential equation with the help of the Erdélyi-Kober fractional operators. Subsequently, the one-parameter group of Lie point transformation and a special type exact solution of this researched model were also obtained. Lastly, based on the nonlinear self-adjointness, conservation laws of the space-time fractional KdV-like equation can be found. These results can provide us with a new scheme for studying space-time fractional differential equations.

    MSC: 76Mxx, 70G65
  • 加载中
  • [1] M. R. Ali, W. X. Ma and R. Sadat, Lie symmetry analysis and wave propagation in variable-coefficient nonlinear physical phenomena, East. Asian. J. Appl. Math., 2022, 12(1), 201–212. doi: 10.4208/eajam.100920.060121

    CrossRef Google Scholar

    [2] D. Baleanu, Y. Abdullahi and I. Aliyu, Space-time fractional Rosenou-Haynam equation: Lie symmetry analysis, explicit solutions and conservation laws, Adv. Diff. Eqe., 2018, 2018(1), 46. doi: 10.1186/s13662-018-1468-3

    CrossRef Google Scholar

    [3] D. Baleanu, M. Inc, A. Yusuf and A. I. Aliyu, Time fractional third-order evolution equation: Symmetry analysis, explicit solutions, and conservation laws, J. Comput. Nonl. Dyn., 2018, 13, 021011. doi: 10.1115/1.4037765

    CrossRef Google Scholar

    [4] G. W. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations, Springer-Verlag, Heidelburg, 2002.

    Google Scholar

    [5] E. Buckwar and Y. Luchko, Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, J. Math. Anal. Appl., 1998, 227(1), 81–97. doi: 10.1006/jmaa.1998.6078

    CrossRef Google Scholar

    [6] A. Bueno-Orovio, D. Kay and K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equations, BIT. Numer. Math., 2014, 54(4), 937–954. doi: 10.1007/s10543-014-0484-2

    CrossRef Google Scholar

    [7] G. I. Burde, Solitary wave solutions of the high-order KdV models for bi-directional water waves, Commun. Nonl. Sci. Numer. Simul., 2011, 16(3), 1314–1328. doi: 10.1016/j.cnsns.2010.06.032

    CrossRef Google Scholar

    [8] R. K. Gazizov, N. H. Ibragimov and S. Y. Lukashchuk, Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations, Commun. Nonl. Sci. Numer. Simul., 2015, 23(1–3), 153–163.

    Google Scholar

    [9] R. K. Gazizov, A. A. Kasatkin and S. Y. Lukashchuk, Continuous transformation groups of fractional differential equations, Vestnik. Usatu., 2007, 9(3), 21.

    Google Scholar

    [10] S. E. Hamamci, Stabilization using fractional-order PI and PID controllers, Nonl. Dyn., 2008, 51, 329–343.

    Google Scholar

    [11] E. E. Ibekwe, U. S. Okorie, J. B. Emah, E. P. Inyang and S. A. Ekong, Mass spectrum of heavy quarkonium for screened Kratzer potential (SKP) using series expansion method, Eur. Phys. J. Plus., 2021, 136(8), 843. doi: 10.1140/epjp/s13360-021-01813-1

    CrossRef Google Scholar

    [12] N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 2007, 333(1), 311–328. doi: 10.1016/j.jmaa.2006.10.078

    CrossRef Google Scholar

    [13] M. Inc, A. Yusuf, A. I. Aliyu and D Baleanu, Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations, Phys. A: Stat. Mech. Appl. 2018, 496, 371–383. doi: 10.1016/j.physa.2017.12.119

    CrossRef Google Scholar

    [14] H. Jafari, N. Kadkhoda and D. Baleanu, Fractional Lie group method of the time-fractional Boussinesq equation, Nonl. Dyn., 2015, 81(3), 1569–1574. doi: 10.1007/s11071-015-2091-4

    CrossRef Google Scholar

    [15] D. Khongorzul, H. Ochiai and U. Zunderiya, Lie symmetry analysis of a class of time fractional nonlinear evolution systems, Appl. Math. Comput., 2018, 329, 105–117.

    Google Scholar

    [16] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

    Google Scholar

    [17] V. Kiryakova, Generalized Fractional Calculus and Applications, Longman Scientific & Technical, Harlow, 1994.

    Google Scholar

    [18] S. Komal and R. K. Gupta, Space-time fractional nonlinear partial differential equations: Symmetry analysis and conservation laws, Nonl. Dyn., 2017, 89(1), 321–331. doi: 10.1007/s11071-017-3456-7

    CrossRef Google Scholar

    [19] K. Li and J. Peng, Laplace transform and fractional differential equations, Appl. Math. Lett., 2011, 24(12), 2019–2023. doi: 10.1016/j.aml.2011.05.035

    CrossRef Google Scholar

    [20] H. Liu and J. Li, Lie symmetry analysis and exact solutions for the short pulse equation, Nonl. Anal: Theory. Meth. Appl., 2009, 71(5), 2126–2133.

    Google Scholar

    [21] J. G. Liu and X. J. Yang, Symmetry group analysis of several coupled fractional partial differential equations, Chaos. Solitons. Fract., 2023, 173, 113603. doi: 10.1016/j.chaos.2023.113603

    CrossRef Google Scholar

    [22] J. G. Liu, X. J. Yang, Y. Y. Feng and L. L. Geng, Symmetry analysis of the generalized space and time fractional Korteweg-de Vries equation, Int. J. Geom. Meth. Moder. Phys., 2021, 18(14), 2150235. doi: 10.1142/S0219887821502352

    CrossRef Google Scholar

    [23] J. G. Liu, X. J. Yang, Y. Y. Feng and H. Y. Zhang, Analysis of the time fractional nonlinear diffusion equation from diffusion process, J. Appl. Anal. Comput., 2020, 10(3), 1060–1072.

    Google Scholar

    [24] J. G. Liu, X. J. Yang, L. L. Geng and X. J. Yu, On fractional symmetry group scheme to the higher dimensional space and time fractional dissipative Burgers equation, Int. J. Geom. Meth. Moder. Phys., 2022, 19(11), 2250173. doi: 10.1142/S0219887822501730

    CrossRef Google Scholar

    [25] J. G. Liu, X. J. Yang and J. J. Wang, A new perspective to discuss Korteweg-de Vries-like equation, Phys. Lett. A., 2022, 451, 128429. doi: 10.1016/j.physleta.2022.128429

    CrossRef Google Scholar

    [26] J. G. Liu, Y. F. Zhang and J. J. Wang, Investigation of the time fractional generalized (2+1)-dimensional Zakharov-Kuznetsov equation with single-power law nonlinearity, Fract., 2023, 31(5), 2350033. doi: 10.1142/S0218348X23500330

    CrossRef Google Scholar

    [27] M. M. Meerschaert, H. P. Scheffler and C. Tadjeran, Finite difference methods for two-dimensional fractional dispersion equation, J. Comput. Phys., 2006, 22, 249–261.

    Google Scholar

    [28] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.

    Google Scholar

    [29] K. B. Oldham and F. Spsnier, The Fractional Calculus, Academic Press, New York, 1974.

    Google Scholar

    [30] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, Heidelberg, 1986.

    Google Scholar

    [31] T. J. Osler, Leibniz rule for fractional derivatives generalized and an application to infinite series, SIAM. J. Appl. Math., 1970, 18(3), 658-674. doi: 10.1137/0118059

    CrossRef Google Scholar

    [32] L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic, New York, 1982.

    Google Scholar

    [33] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego 1999.

    Google Scholar

    [34] D. Rajesh, M. Malik, S. Abbas and A. Debbouche, Optimal controls for second-order stochastic differential equations driven by mixed-fractional Brownian motion with impulses, Math. Meth. Appl. Sci., 2020, 43(7), 4107–4124.

    Google Scholar

    [35] W. Rui and X. Zhang, Lie symmetries and conservation laws for the time fractional Derrida-Lebowitz-Speer-Spohn equation, Commun. Nonl. Sci. Numer. Simul., 2016, 34, 38–44. doi: 10.1016/j.cnsns.2015.10.004

    CrossRef Google Scholar

    [36] S. Samko, A. A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach science, Switzerland, 1993.

    Google Scholar

    [37] X. B. Wang and S. Tian, Lie symmetry analysis, conservation laws and analytical solutions of the time-fractional thin-film equation, Comput. Appl. Math., 2018, 37, 6270–6282. doi: 10.1007/s40314-018-0699-y

    CrossRef Google Scholar

    [38] X. B. Wang, S. F. Tian, C. Y. Qin and T. T. Zhang, Lie symmetry analysis, conservation laws and exact solutions of the generalized time fractional Burgers equation, Eur. Lett., 2016, 114(2), 20003. doi: 10.1209/0295-5075/114/20003

    CrossRef Google Scholar

    [39] A. Wiman, Uber den fundamental satz in der theorie der funcktionen $ {E_{\alpha}(x)}$, Acta. Math., 1905, 29, 191–201. doi: 10.1007/BF02403202

    CrossRef $ {E_{\alpha}(x)}$" target="_blank">Google Scholar

    [40] X. J. Yang, General Fractional Derivatives: Theory, Methods and Applications, CRC Press, New York, USA, 2019.

    Google Scholar

    [41] X. J. Yang, Y. Y. Feng, C. Cattani and M. Inc, Fundamental solutions of anomalous diffusion equations with the decay exponential kernel, Math. Meth. Appl. Sci., 2019, 42, 4054–4060. doi: 10.1002/mma.5634

    CrossRef Google Scholar

    [42] X. J. Yang, F. Gao and Y. Ju, General Fractional Derivatives with Applications in Viscoelasticity, Elsevier, 2020.

    Google Scholar

    [43] Y. Zhang, J. Mei and X. Zhang, Symmetry properties and explicit solutions of some nonlinear differential and fractional equations, Appl. Math. Comput., 2018, 337, 408–412.

    Google Scholar

    [44] Z. Y. Zhang, Symmetry determination and nonlinearization of a nonlinear time-fractional partial differential equation, Proc. Royal. Soc. A., 2020, 476, 20190564. doi: 10.1098/rspa.2019.0564

    CrossRef Google Scholar

Article Metrics

Article views(1577) PDF downloads(833) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint