Citation: | Jian-Gen Liu, Xiao-Jun Yang, Yi-Ying Feng, Lu-Lu Geng. INVARIANT ANALYSIS AND CONSERVATION LAWS FOR THE SPACE-TIME FRACTIONAL KDV-LIKE EQUATION[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 1-15. doi: 10.11948/20220202 |
Fractional calculus plays an essential role in describing nonlinear phenomena appears in applied sciences. In this article, we handle mainly the Korteweg-de Vries (KdV)-like equation which can be used to depicted the shallow water waves evolution mechanism in the sense of the space-time fractional derivative of the Riemann-Liouville. Firstly, on the basis of the Lie symmetry analysis technology, the symmetry of this considered model was constructed. Then, this equation can be changed into a fractional ordinary differential equation with the help of the Erdélyi-Kober fractional operators. Subsequently, the one-parameter group of Lie point transformation and a special type exact solution of this researched model were also obtained. Lastly, based on the nonlinear self-adjointness, conservation laws of the space-time fractional KdV-like equation can be found. These results can provide us with a new scheme for studying space-time fractional differential equations.
[1] | M. R. Ali, W. X. Ma and R. Sadat, Lie symmetry analysis and wave propagation in variable-coefficient nonlinear physical phenomena, East. Asian. J. Appl. Math., 2022, 12(1), 201–212. doi: 10.4208/eajam.100920.060121 |
[2] | D. Baleanu, Y. Abdullahi and I. Aliyu, Space-time fractional Rosenou-Haynam equation: Lie symmetry analysis, explicit solutions and conservation laws, Adv. Diff. Eqe., 2018, 2018(1), 46. doi: 10.1186/s13662-018-1468-3 |
[3] | D. Baleanu, M. Inc, A. Yusuf and A. I. Aliyu, Time fractional third-order evolution equation: Symmetry analysis, explicit solutions, and conservation laws, J. Comput. Nonl. Dyn., 2018, 13, 021011. doi: 10.1115/1.4037765 |
[4] | G. W. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations, Springer-Verlag, Heidelburg, 2002. |
[5] | E. Buckwar and Y. Luchko, Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, J. Math. Anal. Appl., 1998, 227(1), 81–97. doi: 10.1006/jmaa.1998.6078 |
[6] | A. Bueno-Orovio, D. Kay and K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equations, BIT. Numer. Math., 2014, 54(4), 937–954. doi: 10.1007/s10543-014-0484-2 |
[7] | G. I. Burde, Solitary wave solutions of the high-order KdV models for bi-directional water waves, Commun. Nonl. Sci. Numer. Simul., 2011, 16(3), 1314–1328. doi: 10.1016/j.cnsns.2010.06.032 |
[8] | R. K. Gazizov, N. H. Ibragimov and S. Y. Lukashchuk, Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations, Commun. Nonl. Sci. Numer. Simul., 2015, 23(1–3), 153–163. |
[9] | R. K. Gazizov, A. A. Kasatkin and S. Y. Lukashchuk, Continuous transformation groups of fractional differential equations, Vestnik. Usatu., 2007, 9(3), 21. |
[10] | S. E. Hamamci, Stabilization using fractional-order PI and PID controllers, Nonl. Dyn., 2008, 51, 329–343. |
[11] | E. E. Ibekwe, U. S. Okorie, J. B. Emah, E. P. Inyang and S. A. Ekong, Mass spectrum of heavy quarkonium for screened Kratzer potential (SKP) using series expansion method, Eur. Phys. J. Plus., 2021, 136(8), 843. doi: 10.1140/epjp/s13360-021-01813-1 |
[12] | N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 2007, 333(1), 311–328. doi: 10.1016/j.jmaa.2006.10.078 |
[13] | M. Inc, A. Yusuf, A. I. Aliyu and D Baleanu, Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations, Phys. A: Stat. Mech. Appl. 2018, 496, 371–383. doi: 10.1016/j.physa.2017.12.119 |
[14] | H. Jafari, N. Kadkhoda and D. Baleanu, Fractional Lie group method of the time-fractional Boussinesq equation, Nonl. Dyn., 2015, 81(3), 1569–1574. doi: 10.1007/s11071-015-2091-4 |
[15] | D. Khongorzul, H. Ochiai and U. Zunderiya, Lie symmetry analysis of a class of time fractional nonlinear evolution systems, Appl. Math. Comput., 2018, 329, 105–117. |
[16] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. |
[17] | V. Kiryakova, Generalized Fractional Calculus and Applications, Longman Scientific & Technical, Harlow, 1994. |
[18] | S. Komal and R. K. Gupta, Space-time fractional nonlinear partial differential equations: Symmetry analysis and conservation laws, Nonl. Dyn., 2017, 89(1), 321–331. doi: 10.1007/s11071-017-3456-7 |
[19] | K. Li and J. Peng, Laplace transform and fractional differential equations, Appl. Math. Lett., 2011, 24(12), 2019–2023. doi: 10.1016/j.aml.2011.05.035 |
[20] | H. Liu and J. Li, Lie symmetry analysis and exact solutions for the short pulse equation, Nonl. Anal: Theory. Meth. Appl., 2009, 71(5), 2126–2133. |
[21] | J. G. Liu and X. J. Yang, Symmetry group analysis of several coupled fractional partial differential equations, Chaos. Solitons. Fract., 2023, 173, 113603. doi: 10.1016/j.chaos.2023.113603 |
[22] | J. G. Liu, X. J. Yang, Y. Y. Feng and L. L. Geng, Symmetry analysis of the generalized space and time fractional Korteweg-de Vries equation, Int. J. Geom. Meth. Moder. Phys., 2021, 18(14), 2150235. doi: 10.1142/S0219887821502352 |
[23] | J. G. Liu, X. J. Yang, Y. Y. Feng and H. Y. Zhang, Analysis of the time fractional nonlinear diffusion equation from diffusion process, J. Appl. Anal. Comput., 2020, 10(3), 1060–1072. |
[24] | J. G. Liu, X. J. Yang, L. L. Geng and X. J. Yu, On fractional symmetry group scheme to the higher dimensional space and time fractional dissipative Burgers equation, Int. J. Geom. Meth. Moder. Phys., 2022, 19(11), 2250173. doi: 10.1142/S0219887822501730 |
[25] | J. G. Liu, X. J. Yang and J. J. Wang, A new perspective to discuss Korteweg-de Vries-like equation, Phys. Lett. A., 2022, 451, 128429. doi: 10.1016/j.physleta.2022.128429 |
[26] | J. G. Liu, Y. F. Zhang and J. J. Wang, Investigation of the time fractional generalized (2+1)-dimensional Zakharov-Kuznetsov equation with single-power law nonlinearity, Fract., 2023, 31(5), 2350033. doi: 10.1142/S0218348X23500330 |
[27] | M. M. Meerschaert, H. P. Scheffler and C. Tadjeran, Finite difference methods for two-dimensional fractional dispersion equation, J. Comput. Phys., 2006, 22, 249–261. |
[28] | K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993. |
[29] | K. B. Oldham and F. Spsnier, The Fractional Calculus, Academic Press, New York, 1974. |
[30] | P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, Heidelberg, 1986. |
[31] | T. J. Osler, Leibniz rule for fractional derivatives generalized and an application to infinite series, SIAM. J. Appl. Math., 1970, 18(3), 658-674. doi: 10.1137/0118059 |
[32] | L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic, New York, 1982. |
[33] | I. Podlubny, Fractional Differential Equations, Academic Press, San Diego 1999. |
[34] | D. Rajesh, M. Malik, S. Abbas and A. Debbouche, Optimal controls for second-order stochastic differential equations driven by mixed-fractional Brownian motion with impulses, Math. Meth. Appl. Sci., 2020, 43(7), 4107–4124. |
[35] | W. Rui and X. Zhang, Lie symmetries and conservation laws for the time fractional Derrida-Lebowitz-Speer-Spohn equation, Commun. Nonl. Sci. Numer. Simul., 2016, 34, 38–44. doi: 10.1016/j.cnsns.2015.10.004 |
[36] | S. Samko, A. A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach science, Switzerland, 1993. |
[37] | X. B. Wang and S. Tian, Lie symmetry analysis, conservation laws and analytical solutions of the time-fractional thin-film equation, Comput. Appl. Math., 2018, 37, 6270–6282. doi: 10.1007/s40314-018-0699-y |
[38] | X. B. Wang, S. F. Tian, C. Y. Qin and T. T. Zhang, Lie symmetry analysis, conservation laws and exact solutions of the generalized time fractional Burgers equation, Eur. Lett., 2016, 114(2), 20003. doi: 10.1209/0295-5075/114/20003 |
[39] | A. Wiman, Uber den fundamental satz in der theorie der funcktionen $ {E_{\alpha}(x)}$, Acta. Math., 1905, 29, 191–201. doi: 10.1007/BF02403202 |
[40] | X. J. Yang, General Fractional Derivatives: Theory, Methods and Applications, CRC Press, New York, USA, 2019. |
[41] | X. J. Yang, Y. Y. Feng, C. Cattani and M. Inc, Fundamental solutions of anomalous diffusion equations with the decay exponential kernel, Math. Meth. Appl. Sci., 2019, 42, 4054–4060. doi: 10.1002/mma.5634 |
[42] | X. J. Yang, F. Gao and Y. Ju, General Fractional Derivatives with Applications in Viscoelasticity, Elsevier, 2020. |
[43] | Y. Zhang, J. Mei and X. Zhang, Symmetry properties and explicit solutions of some nonlinear differential and fractional equations, Appl. Math. Comput., 2018, 337, 408–412. |
[44] | Z. Y. Zhang, Symmetry determination and nonlinearization of a nonlinear time-fractional partial differential equation, Proc. Royal. Soc. A., 2020, 476, 20190564. doi: 10.1098/rspa.2019.0564 |