2024 Volume 14 Issue 1
Article Contents

Haide Gou, He Yang. EXISTENCE AND ASYMPTOTIC BEHAVIOR OF MILD SOLUTIONS FOR FRACTIONAL MEASURE DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 16-41. doi: 10.11948/20220435
Citation: Haide Gou, He Yang. EXISTENCE AND ASYMPTOTIC BEHAVIOR OF MILD SOLUTIONS FOR FRACTIONAL MEASURE DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 16-41. doi: 10.11948/20220435

EXISTENCE AND ASYMPTOTIC BEHAVIOR OF MILD SOLUTIONS FOR FRACTIONAL MEASURE DIFFERENTIAL EQUATIONS

  • Author Bio: Email: yanghe256@163.com(H. Yang)
  • Corresponding author: Email: 842204214@qq.com(H. Gou) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Grant No. 11661071, 12061062). Science Research Project for Colleges and Universities of Gansu Province (No. 2022A-010) and Project of NWNULKQN2023-02
  • This paper is concerned with a class of nonlocal problem of multi-term time-fractional measure differential equations involving delay and nonlocal conditions in Banach spaces. We first introduce the concept of $S$-asymptotically $\omega$-periodic mild solution, on the premise of by utilizing $(\beta, \gamma_k)$-resolvent family and measure functional (Henstock-Lebesgue-Stieltjes integral) under regulated functions. And then we show by using Schauder fixed point theorem. that the existence of $S$ -asymptotically $\omega$ periodic mild solutions for the mentioned system are obtained. Finally, an example to illustrate the obtained results is given.

    MSC: 26A33, 34G20, 34K13, 47D06, 46T20
  • 加载中
  • [1] M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah and F. Jarad, Existence of positive solutions for weighted fractional order differential equations, Chaos, Solitons & Fractals., 2020, 141, 110341.

    Google Scholar

    [2] W. Arendt, C. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy-Problems, Monographs in Mathematics, Birkhäuser, Basel, 2001, 96.

    Google Scholar

    [3] T. Atanackovic, D. Dolicanin, S. Pilipovic and B. Stankovic, Cauchy problems for some classes of linear fractional differential equations, Fract. Calc. Appl. Anal., 2014, 17(4), 1039–1059. doi: 10.2478/s13540-014-0213-1

    CrossRef Google Scholar

    [4] B. Baeumer, M. M. Meerschaert and E. Nane, Brownian subordinators and fractional Cauchy peoblems, Trans. Amer. Math. Soc., 2009, 361(7), 3915–3930. doi: 10.1090/S0002-9947-09-04678-9

    CrossRef Google Scholar

    [5] A. Boucherif, Semilinear evolution inclusions with nonlocal conditions, Appl. Math. Lett., 2009, 22(8), 1145–1149. doi: 10.1016/j.aml.2008.10.004

    CrossRef Google Scholar

    [6] B. Brogliato, Nonsmooth Mechanics: Models, Dynamics, and Control, Springer, 1996.

    Google Scholar

    [7] L. Byszewski, Existence and uniqueness of a classical solution to a functional differential abstract nonlocal Cauchy problem, J. Appl. Math. Stochastic Anal., 1999, 12(1), 91–97. doi: 10.1155/S1048953399000088

    CrossRef Google Scholar

    [8] L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 1991, 40(1), 11–19. doi: 10.1080/00036819008839989

    CrossRef Google Scholar

    [9] Y. Cao and J. Sun, On existence of nonlinear measure driven equations involving non-absolutely convergent integrals, Nonlinear Anal. Hybrid Syst., 2016, 20, 72–81. doi: 10.1016/j.nahs.2015.11.003

    CrossRef Google Scholar

    [10] Y. Cao and J. Sun, Approximate controllability of semilinear measure driven systems, Mathematische Nachrichten, 2018, 291(13), 1979–1988. doi: 10.1002/mana.201600200

    CrossRef Google Scholar

    [11] Y. Cao and J. Sun, Existence of solutions for semilinear measure driven equations, Journal of Mathematical Analysis and Applications, 2015, 425(2), 621–631. doi: 10.1016/j.jmaa.2014.12.042

    CrossRef Google Scholar

    [12] Y. Cao and J. Sun, Measures of noncompactness in spaces of regulated functions with application to semilinear measure driven equations, Boundary Value Problems, 2016, 2016(1), 1–17. doi: 10.1186/s13661-015-0477-3

    CrossRef Google Scholar

    [13] M. Cichoń and B. R. Satco, Measure differential inclusions-between continuous and discrete, Adv. Difference Equ., 2014, 1(56).

    Google Scholar

    [14] C. Cuevas, H. R. Henriquez and H. Soto, Asymptotically periodic solutions of fractional differential equations, Appl. Math. Comput., 2014, 236, 524–545.

    Google Scholar

    [15] C. Cuevas and J. Souza, Existence of $S$-asymptotically $\omega$-periodic solutions for fractional order functional integro-differential equations with infinite delay, Nonlinear Anal., 2010, 72, 1683–1689. doi: 10.1016/j.na.2009.09.007

    CrossRef $S$-asymptotically $\omega$-periodic solutions for fractional order functional integro-differential equations with infinite delay" target="_blank">Google Scholar

    [16] V. Daftardar-Gejji and S. Bhalekar, Boundary value problems for multi-term fractional differential equations, J. Math. Anal. Appl., 2008, 345, 754–765. doi: 10.1016/j.jmaa.2008.04.065

    CrossRef Google Scholar

    [17] P. C. Das and R. R. Sharma, Existence and stability of measure differential equations, Czechoslovak Math. J., 1972, 22(97), 145–158.

    Google Scholar

    [18] K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 1993, 179(2), 630–637. doi: 10.1006/jmaa.1993.1373

    CrossRef Google Scholar

    [19] J. Diestel, W. M. Ruess and W. Schachermayer, Weak compactness in $l.1(\mu,x)$, Proc. Amer. Math. Soc, 1993, 118, 447–453.

    $l.1(\mu,x)$" target="_blank">Google Scholar

    [20] A. Diop, M. A. Diop, K. Ezzinbi and P. A. Guindo, Optimal controls problems for some impulsive stochastic integro-differential equations with state-dependent delay, Stochastics, 2022. DOI: 10.1080/17442508.2022.2029446.

    CrossRef Google Scholar

    [21] J. Dugundji and A. Granas, Fixed Point Theory, Pwn Polish Scientific Publishers, 1982.

    Google Scholar

    [22] M. Federson, J. G. Mesquita and A. Slavìk, Measure functional differential equations and functional dynamic equations on time scales, J. Differential Equations, 2012, 252, 3816–3847. doi: 10.1016/j.jde.2011.11.005

    CrossRef Google Scholar

    [23] M. Federson, J. G. Mesquita and A. Slavík, Basic results for functional differential and dynamic equations involving impulses, Math. Nachr., 2013, 286(2–3), 181–204. doi: 10.1002/mana.201200006

    CrossRef Google Scholar

    [24] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, in: Grad. Stud. Math., vol. 4, AMS, Providence, 1994.

    Google Scholar

    [25] H. Gou and Y. Li, Existence and approximate controllability of semilinear measure driven systems with nonlocal conditions, Bulletin of the Iranian Mathematical Society, 2022, 48, 769–789. doi: 10.1007/s41980-021-00546-2

    CrossRef Google Scholar

    [26] H. Gu and Y. Sun, Nonlocal controllability of fractional measure evolution equation, Journal of Inequalities and Applications, 2020, 1, 1–18.

    Google Scholar

    [27] H. R. Henríquez, M. Pierri and P. Táboas, On $S$-asymptotically $\omega$-periodic functions on Banach spaces and applications, J. Math. Anal. Appl., 2008, 343, 1119–1130. doi: 10.1016/j.jmaa.2008.02.023

    CrossRef $S$-asymptotically $\omega$-periodic functions on Banach spaces and applications" target="_blank">Google Scholar

    [28] E. Hernandez and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., 2013, 141, 1641–1649.

    Google Scholar

    [29] Z. Jiao and Y. Q. Chen, Stability of fractional-order linear time-invariant systems with multiple noncommensurate orders, Comput. Math. Appl., 2012, 64(10), 3053–3058. doi: 10.1016/j.camwa.2011.10.014

    CrossRef Google Scholar

    [30] V. Keyantuo, C. Lizama and M. Warma, Asymptotic behavior of fractional order semilinear evolution equations, Differential and Integral Equations, 2013, 26(7/8), 757–780.

    Google Scholar

    [31] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Amsterdam: Elsevier Science B. V. 2006.

    Google Scholar

    [32] R. I. Leine and T. F. Heimsch, Global uniform symptotic attractive stability of the non-autonomous bouncing ball system, Phys. D., 2012, 241, 2029–2041. doi: 10.1016/j.physd.2011.04.013

    CrossRef Google Scholar

    [33] C. Li, F. Zhang, J. Kurths and F. Zeng, Equivalent system for a multiple-rational-order fractional differential system, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 2013, 371, 20120156.

    Google Scholar

    [34] C. G. Li, M. Kostic, M. Li and S. Piskarev, On a class of time-fractional differential equations, Fractional Calculus and Applied Analysis, 2012, 15(4), 639–668. doi: 10.2478/s13540-012-0044-x

    CrossRef Google Scholar

    [35] F. Li, J. Liang and H. Wang, $S$-asymptotically $\omega$-periodic solution for fractional differential equations of order $q\in (0,1)$ with finite delay, Adv. Difference Equ., 2017, 83, 14 pp.

    $S$-asymptotically $\omega$-periodic solution for fractional differential equations of order $q\in (0,1)$ with finite delay" target="_blank">Google Scholar

    [36] F. Li and H. Wang, $S$-asymptotically $\omega$-periodic mild solutions of neutral fractional differential equations with finite delay in Banach space, Mediterr. J. Math., 2017, 14, 57. doi: 10.1007/s00009-017-0855-4

    CrossRef $S$-asymptotically $\omega$-periodic mild solutions of neutral fractional differential equations with finite delay in Banach space" target="_blank">Google Scholar

    [37] Y. Luchko, Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl., 2011, 374, 538–548. doi: 10.1016/j.jmaa.2010.08.048

    CrossRef Google Scholar

    [38] V. T. Luong and N. T. Tung, Decay mild solutions for elastic systems with structural damping involving nonlocal conditions, Vestnik St. Petersburg Univer. Math., 2017, 50(1), 55–67. doi: 10.3103/S1063454117010083

    CrossRef Google Scholar

    [39] V. T. Luong and N. T. Tung, Exponential decay for elastic systems with structural damping and infinite delay, Appl. Anal., 2020, 99(1), 13–28. doi: 10.1080/00036811.2018.1484907

    CrossRef Google Scholar

    [40] S. M. Manou-Abi and W. Dimbour, On the $p$-th mean $S$-asymptotically omega periodic solution for some stochastic evolution equation driven by $\mathcal{Q}$-brownian motion, arXiv: 1711.03767v1.

    Google Scholar

    [41] J. G. Mesquita, Measure Functional Differential Equations and Impulsive Functional Dynamic Equations on Time Scales, Universidade de Sao Paulo, Brazil, Ph. D. thesis, 2012.

    Google Scholar

    [42] B. M. Miller and E. Y. Rubinovich, Impulsive Control in Continuous and Discrete Continuous Systems, Kluwer Academic Publishers, NewYork, Boston, Dordrecht, London, Moscow, 2003.

    Google Scholar

    [43] J. J. Moreau, Unilateral contact and dry friction in finite freedom dynamics, in: Nonsmooth Mechanics and Applications, Springer-Verlag, NewYork, 1988, 1–82.

    Google Scholar

    [44] E. Nane, Higher order PDE's and iterated processes, Trans. Amer. Math. Soc., 2008, 360, 2681–2692.

    Google Scholar

    [45] S. G. Pandit and S. G. Deo, Differential Systems Involving Impulses, Springer, 1982.

    Google Scholar

    [46] E. A. Pardo and C. Lizama, Mild solutions for multi-term time-fractional differential equations with nonlocal initial conditions, Electronic Journal of Differential Equations, 2020, 39, 1–10.

    Google Scholar

    [47] M. Pierri, On $S$-asymptotically $\omega$-periodic functions and applications, Nonlinear Anal., 75, 2012, 651–661. doi: 10.1016/j.na.2011.08.059

    CrossRef $S$-asymptotically $\omega$-periodic functions and applications" target="_blank">Google Scholar

    [48] I. Podlubny, Fractional Differential Equations, NewYork, NY: Academic Press, 1999.

    Google Scholar

    [49] L. Ren, J. Wang and M. Fečkan, Asymptotically periodic solutions for Caputo type fractional evolution equations, Fract. Calc. Appl. Anal., 2018, 12, 1294–1312.

    Google Scholar

    [50] B. Satco, Regulated solutions for nonlinear measure driven equations, Nonlinear Anal. Hybrid Syst., 2014, 13, 22–31. doi: 10.1016/j.nahs.2014.02.001

    CrossRef Google Scholar

    [51] W. W. Schmaedeke, Optimal control theory for nonlinear vector differential equations containing measures, 1965, J. SIAM Control, 3(2).

    Google Scholar

    [52] K. Shah, T. Abdeljawad and A. Ali, Mathematical analysis of the Cauchy type dynamical system under piecewise equations with Caputo fractional derivative, Chaos, Solitons & Fractals, 2022, 161, 112356.

    Google Scholar

    [53] K. Shah, M. Arfan, A. Ullah, Q. A. Mdallal, K. J. Ansari and T. Abdeljawad, Computational study on the dynamics of fractional order differential equations with applications, Chaos, Solitons & Fractals, 2022, 157, 111955.

    Google Scholar

    [54] R. R. Sharma, An abstract measure differential equation, Proc. Amer. Math. Soc., 1972, 32, 503–510. doi: 10.1090/S0002-9939-1972-0291600-3

    CrossRef Google Scholar

    [55] V. Singh and D. N. Pandey, Controllability of multi-term time-fractional differential systems, Journal of Control and Decision, 2020, 7(2), 109–125. doi: 10.1080/23307706.2018.1495584

    CrossRef Google Scholar

    [56] M. Stojanović and R. Gorenflo, onlinear two-term time fractional diffusion-wave problem, Nonlinear Anal. Real World Appl., 2010, 11(5), 3512–3523. doi: 10.1016/j.nonrwa.2009.12.012

    CrossRef Google Scholar

    [57] K. Surendra and P. A. Ravi, Existence of solution non-autonomous semilinear measure driven equations, Differential Equation & Application, 2020, 12(3), 313–322.

    Google Scholar

    [58] P. J. Torvik and R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 1984, 51, 294–298. doi: 10.1115/1.3167615

    CrossRef Google Scholar

    [59] L. V. Trong, Decay mild solutions for two-term time fractional differential equations in Banach spaces, Journal Fixed Point Theory and Applications, 2016, 18, 417–432. doi: 10.1007/s11784-016-0281-4

    CrossRef Google Scholar

    [60] N. V. Wouw and R. I. Leine, Tracking Control for a Class of Measure Differential Inclusions, in: Proceedings of the 47th IEEE Conference on Decision and Control, 2008.

    Google Scholar

    [61] T. Xiao and J. Liang, Existence of classical solutions to nonautonomous nonlocal parabolic problems, Nonlinear Anal. Theory Methods Appl., 2005, 63(5–7), e225–e232.

    Google Scholar

    [62] X. Xue, Nonlocal nonlinear differential equations with a measure of noncompactness in Banach spaces, Nonlinear Anal. Theory Methods Appl., 2009, 70(7), 2593–2601. doi: 10.1016/j.na.2008.03.046

    CrossRef Google Scholar

    [63] S. T. Zavalishchin and A. N. Sesekin, Dynamic Impulse Systems: Theory and Applications, Kluwer Academic Publishers, Dor-drecht, TheNetherlands, 1997.

    Google Scholar

Article Metrics

Article views(1402) PDF downloads(559) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint