Citation: | Julio G. Dix, Hongwu Wu. ANOTHER IMPROVEMENT ON OSCILLATION CRITERIA FOR FIRST-ORDER DELAY DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1421-1428. doi: 10.11948/20220206 |
This article studies the oscillation of solutions to the delay differential equation
$ x'(t)+p(t)x(\tau(t))=0. $
We improve the existing oscillation criteria, by lowering the existing bounds on $ \limsup\int_\tau^t p $ that provide sufficient conditions for the oscillation of all solutions.
[1] | R. P. Agarwal, L. Berezansky, E. Braverman and A. Domoshnitsky, Nonoscillation Theory of Functional Differential Equations with Applications, Springer, 2012. |
[2] | E. R. Attia and H. A. El-Morshedy, New oscillation criteria for first order linear differential equation with non-monotonte delays, Journal of Applied Analysis & Computation, 2022. |
[3] | H. Bereketoglu, F. Karakoc, G. S. Oztepe and I. P. Stavroulakis, Oscillation of first-order differential equations with several non-monotone retarded arguments, Georgian Math. J., 2020, 27(3), 341-350. doi: 10.1515/gmj-2019-2055 |
[4] | J. G. Dix, Improved oscillation criteria for first-order delay differential equations with variable, Electron. J. Differential Eq., 2021, 2021(32), 1-12. |
[5] | A. Elbert and I. P. Stavroulakis, Oscillation and non-oscillation criteria fro delay differential equations, Proceedings of the AMS, 1995, 123(5), 1503-1510. doi: 10.1090/S0002-9939-1995-1242082-1 |
[6] | L. H. Erbe, Q. Kong and B. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1995. |
[7] | A. Garab, M. Pituk and I. P. Stavroulakis, A sharp oscillation criterion for a linear delay differential equation, Appl. Math. Let., 2019, 93, 58-65. doi: 10.1016/j.aml.2019.01.042 |
[8] | A. Garab and I. P. Stavroulakis, Oscillation criteria for first order linear delay differential equations with several variable delays, Appl. Math. Lett., 2020, 106. |
[9] | I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991. |
[10] | E. Jagathprabhav and V. Dharmaiah, Oscillation of first order delay differential equations, Malaya J. of Math., 2021, 9(1), 124-129. doi: 10.26637/MJM0901/0021 |
[11] | M. Kon, Y. G. Sficas and I. P. Stavroulakis, Oscillation criteria for delay equations, Proc. Amer. Math. Soc., 2000, 128, 2989-2997. doi: 10.1090/S0002-9939-00-05530-1 |
[12] | G. S. Ladde, V. Lakshmikantham and B. Zhang, Oscillation theory of differential equations with deviating arguments, Marcel Dekker, Inc., New York, 1987. |
[13] | Y. G. Sficas and I. P. Stavroulakis, Oscillation criteria for first-order delay equations, Bull. London Math. Soc., 2003, 35, 239-246. doi: 10.1112/S0024609302001662 |
[14] | I. P. Stavroulakis, Oscillation criteria for delay and difference equation with non-monote arguents, Appl. Math. and Comp., 2014, 226, 661-672. doi: 10.1016/j.amc.2013.10.041 |
[15] | H. Wu, C. Chen and R. Zhuang, Oscillation criterion for first-order delay differential equations with sign-changing coefficients, Electronic J. Differential Equations, 2017, 2017(126), 1-9. |
[16] | Z. Zhuang, Q. Wang and H. Wu, A new oscillation criterion for first-order delay differential equations by iteration, Appl. Math. Comp., 2021, 390, 125632. doi: 10.1016/j.amc.2020.125632 |