2023 Volume 13 Issue 3
Article Contents

Huizhang Yang, Wei Liu, Bin He. EVOLUTIONARY BEHAVIOR OF THE INTERACTION SOLUTIONS FOR A (3+1)-DIMENSIONAL GENERALIZED BREAKING SOLITON EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1429-1448. doi: 10.11948/20220212
Citation: Huizhang Yang, Wei Liu, Bin He. EVOLUTIONARY BEHAVIOR OF THE INTERACTION SOLUTIONS FOR A (3+1)-DIMENSIONAL GENERALIZED BREAKING SOLITON EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1429-1448. doi: 10.11948/20220212

EVOLUTIONARY BEHAVIOR OF THE INTERACTION SOLUTIONS FOR A (3+1)-DIMENSIONAL GENERALIZED BREAKING SOLITON EQUATION

  • Author Bio: Email: yanghuizhangyn@163.com (H. Yang); Email: supliuwei@163.com (W. Liu)
  • Corresponding author: Email: hebinhhu@126.com (B. He)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 11461022) and Natural Science Foundation of Yunnan Province, China (No. 2014FA037)
  • The interaction solutions have attracted the attention of many scholars because of they are valuable in analyzing the nonlinear dynamics of waves in shallow water and can be used for forecasting the appearance of rogue waves. In this paper, we investigate the interaction and rational solutions of a (3+1)-dimensional generalized breaking soliton equation by employing the Hirota bilinear and parameter limit methods along with symbolic computations. By studying the Hirota bilinear form of the equation, abundant interaction and rational solutions are derived by choosing appropriate parameters of the test function. The evolutionary behavior of the interaction solutions is also analyzed theoretically and graphically. Compare with the published literatures, we get some completely new results of the equation in this paper.

    MSC: 35Q51, 35Q53, 74J30
  • 加载中
  • [1] X. Cheng, W. Ma and Y. Yang, Lump-type solutions of a generalized Kadomtsev-Petviashvili equation in (3+1)-dimensions, Chin. Phys. B, 2019, 28(10), 100203. doi: 10.1088/1674-1056/ab3f20

    CrossRef Google Scholar

    [2] J. Gu, Y. Zhang and H. Dong, Dynamic behaviors of interaction solutions of (3+1)-dimensional Shallow Water wave equation, Comput. Math. Appl., 2018, 76(6), 1408-1419. doi: 10.1016/j.camwa.2018.06.034

    CrossRef Google Scholar

    [3] X. Guan, W. Liu, Q. Zhou and A. Biswas, Some lump solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, Appl. Math. Comput., 2020, 366, 124757.

    Google Scholar

    [4] L. Gai, W. Ma and M. Li, Lump-type solutions, rogue wave type solutions and periodic lump-stripe interaction phenomena to a (3+1)-dimensional generalized breaking soliton equation, Phys. Lett. A, 2020, 384(8), 126178. doi: 10.1016/j.physleta.2019.126178

    CrossRef Google Scholar

    [5] X. Hu, S. Lin and L. Wang, Integrability, multiple-cosh, lumps and lump-soliton solutions to a (2+1)-dimensional generalized breaking soliton equation, Commun. Nonlinear Sci. Numer. Simulat., 2020, 91, 105447. doi: 10.1016/j.cnsns.2020.105447

    CrossRef Google Scholar

    [6] K. Hosseini, A. R. Seadawy, M. Mirzazadeh, M. Eslami, S. Radmehr and D. Baleanu, Multiwave, multicomplexiton, and positive multicomplexiton solutions to a (3+1)-dimensional generalized breaking soliton equation, Alex. Eng. J., 2020, 59(5), 3473-3479. doi: 10.1016/j.aej.2020.05.027

    CrossRef Google Scholar

    [7] R. Hirota, The Direct Method in Soliton Theory, Springer, Berlin, 1980.

    Google Scholar

    [8] K. Hosseini, W. Ma, R. Ansari, M. Mirzazadeh, R. Pouyanmehr and F. Samadani, Evolutionary behavior of rational wave solutions to the (4+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Phys. Scr., 2020, 95(6), 065208. doi: 10.1088/1402-4896/ab7fee

    CrossRef Google Scholar

    [9] B. He and Q. Meng, Bilinear form and new interaction solutions for the sixth-order Ramani equation, Appl. Math. Lett., 2019, 98, 411-418. doi: 10.1016/j.aml.2019.06.036

    CrossRef Google Scholar

    [10] O. A. Ilhan, J. Manafian and M. Shahriari, Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev-Petviashvili equation, Comput. Math. Appl., 2019, 78, 2429-2448. doi: 10.1016/j.camwa.2019.03.048

    CrossRef Google Scholar

    [11] X. Liu, J. Yu and Z. Lou, New interaction solutions from residual symmetry reduction and consistent Riccati expansion of the (2+1)-dimensional Boussinesq equation, Nonlinear Dyn., 2018, 92, 1469-1479. doi: 10.1007/s11071-018-4139-8

    CrossRef Google Scholar

    [12] C. Liu, M. Chen, P. Zhou and L. Chen, Bi-solitons, breather solution family and rogue waves for the (2+1)-dimensional nonlinear Schrödinger equation, J. Appl. Anal. Comput., 2016, 6(2), 367-375.

    Google Scholar

    [13] J. Liu, W. Zhu and L. Zhou, Interaction solutions and abundant exact solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in fluid mechanics, J. Appl. Anal. Comput., 2020, 10 (3), 960-971.

    Google Scholar

    [14] W. Liu, A. M. Wazwaz and X. Zheng, Families of semi-rational solutions to the Kadomtsev-Petviashvili I equation, Commun. Nonlinear Sci. Numer. Simulat., 2019, 67, 480-491. doi: 10.1016/j.cnsns.2018.07.020

    CrossRef Google Scholar

    [15] J. Liu, J. Du, Z. Zeng and B. Nie, New three-wave solutions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Nonlinear Dyn., 2017, 88, 655-661. doi: 10.1007/s11071-016-3267-2

    CrossRef Google Scholar

    [16] Z. Li, J. Manafian, N. Ibrahimov, A. Hajar, K. S. Nisar and W. Jamshed, Variety interaction between k-lump and k-kink solutions for the generalized Burgers equation with variable coefficients by bilinear analysis, Results Phys., 2021, 28, 104490. doi: 10.1016/j.rinp.2021.104490

    CrossRef Google Scholar

    [17] W. Ma, A search for lump solutions to a combined fourth-order nonlinear PDE in (2+1)-dimensions, J. Appl. Anal. Comput., 2019, 9(4), 1319-1332.

    Google Scholar

    [18] J. Manafian, S. A. Mohammed, A. Alizadeh, H. M. Baskonus and W. Gao, Investigating lump and its interaction for the third-order evolution equation arising propagation of long waves over shallow water, Eur. J. Mech. B-Fluid., 2020, 84, 289-301. doi: 10.1016/j.euromechflu.2020.04.013

    CrossRef Google Scholar

    [19] J. Manafian and M. Lakestani, N-lump and interaction solutions of localized waves to the (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation, J. Geom. Phys., 2020, 150, 103598. doi: 10.1016/j.geomphys.2020.103598

    CrossRef Google Scholar

    [20] J. Manafian, B. Mohammadi-Ivatloo and M. Abapour, Lump-type solutions and interaction phenomenon to the (2+1)-dimensional Breaking Soliton equation, Appl. Math. Comput., 2019, 356, 13-41.

    Google Scholar

    [21] Y. Ma and B. Li, Interactions between soliton and rogue wave for a (2+1)-dimensional generalized breaking soliton system: Hidden rogue wave and hidden soliton, Comput. Math. Appl., 2019, 78 (3), 827-839. doi: 10.1016/j.camwa.2019.03.002

    CrossRef Google Scholar

    [22] Q. Meng, Rational solutions and interaction solutions for a fourth-order nonlinear generalized Boussinesq water wave equation, Appl. Math. Lett., 2020, 110, 106580. doi: 10.1016/j.aml.2020.106580

    CrossRef Google Scholar

    [23] Y. Qian, J. Manafian, S. Y. Mohyaldeen, L. S. Esmail, S. A. Gorovoy and G. Singh, Multiple-order line rogue wave, lump and its interaction, periodic, and cross-kink solutions for the generalized CHKP equation, Propuls. Power Res., 2021, 10(3), 277-293. doi: 10.1016/j.jppr.2021.09.002

    CrossRef Google Scholar

    [24] B. Ren, W. Ma and J. Yu, Rational solutions and their interaction solutions of the (2+1)-dimensional modified dispersive water wave equation, Comput. Math. Appl., 2019, 77 (8), 2086-2095. doi: 10.1016/j.camwa.2018.12.010

    CrossRef Google Scholar

    [25] G. Shen, J. Manafian, D. T. N. Huy, K. S. Nisar, M. Abotaleb and N. D. Trung, Abundant soliton wave solutions and the linear superposition principle for generalized (3+1)-D nonlinear wave equation in liquid with gas bubbles by bilinear analysis, Results Phys., 2022, 32, 105066. doi: 10.1016/j.rinp.2021.105066

    CrossRef Google Scholar

    [26] W. Tan, Z. Dai, J. Xie and D. Qiu, Parameter limit method and its application in the (4+1)-dimensional Fokas equation, Comput. Math. Appl., 2018, 75 (12), 4214-4220. doi: 10.1016/j.camwa.2018.03.023

    CrossRef Google Scholar

    [27] W. Tan, W. Zhang and J. Zhang, Evolutionary behavior of breathers and interaction solutions with M-solitons for (2+1)-dimensional KdV system, Appl. Math. Lett., 2020, 101, 106063. doi: 10.1016/j.aml.2019.106063

    CrossRef Google Scholar

    [28] S. Tian, D. Guo, X. Wang and T. Zhang, Traveling wave, lump wave, rogue wave, multi-kink solitary wave and interaction solutions in a (3+1)-dimensional Kadomtsev-Petviashvili equation with Bäcklund transformation, J. Appl. Anal. Comput., 2021, 11(1), 45-58.

    Google Scholar

    [29] J. Wu, Y. Liu, L. Piao, J. Zhuang and D. Wang, Nonlinear localized waves resonance and interaction solutions of the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Nonlinear Dyn., 2020, 100, 1527-1541. doi: 10.1007/s11071-020-05573-y

    CrossRef Google Scholar

    [30] A. M. Wazwaz, A new integrable (2+1)-dimensional generalized breaking soliton equation: n-soliton solutions and traveling wave solutions, Commun. Theor. Phys., 2016, 66(4), 385-388. doi: 10.1088/0253-6102/66/4/385

    CrossRef Google Scholar

    [31] G. Xu, Integrability of a (2+1)-dimensional generalized breaking soliton equation, Appl. Math. Lett., 2015, 50, 16-22.

    Google Scholar

    [32] Y. Xu, X. Zheng and J. Xin, Abundant new non-traveling wave solutions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, J. Appl. Anal. Comput., 2021, 11(4), 2052-2069.

    Google Scholar

    [33] Y. Yin, W. Ma, J. Liu and X. Lü, Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction, Comput. Math. Appl., 2018, 76(6), 1275-1283.

    Google Scholar

    [34] X. Yan, S. Tian, M. Dong, L. Zhou and T. Zhang, Characteristics of solitary wave, homoclinic breather wave and rogue wave solutions in a (2+1)-dimensional generalized breaking soliton equation, Comput. Math. Appl., 2018, 76(1), 179-186.

    Google Scholar

    [35] Y. Zhou, S. Manukure and W. Ma, Lump and lump-soliton solutions to the Hirota-Satsuma-Ito equation, Commun. Nonlinear Sci. Numer. Simulat., 2019, 68, 56-62.

    Google Scholar

    [36] Z. Zhao and B. Han, Quasiperiodic wave solutions of a (2+1)-dimensional generalized breaking soliton equation via bilinear Bäcklund transformation, Eur. Phys. J. Plus, 2016, 131, 128.

    Google Scholar

Figures(19)

Article Metrics

Article views(1820) PDF downloads(266) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint