2023 Volume 13 Issue 3
Article Contents

N. Ghanbari, K. Sayevand, I. Masti. A RELIABLE APPROACH FOR ANALYSING THE NONLINEAR KDV EQUATION OF FRACTIONAL ORDER[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1449-1474. doi: 10.11948/20220317
Citation: N. Ghanbari, K. Sayevand, I. Masti. A RELIABLE APPROACH FOR ANALYSING THE NONLINEAR KDV EQUATION OF FRACTIONAL ORDER[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1449-1474. doi: 10.11948/20220317

A RELIABLE APPROACH FOR ANALYSING THE NONLINEAR KDV EQUATION OF FRACTIONAL ORDER

  • Its applications in many domains, along with its challenging analytical solution, have led to several studies of the Korteweg-de Vries (KdV) equation over the past decade. Due to difficulties or impossibility with the analytical solution to this equation, the paper presents a numerical solution using the Crank-Nicolson difference method. A study of the stability and solvency of this method has been undertaken. In this paper, we prove that the scheme is first order convergent in space and $\min \{ 2 - \nu , r\nu \} $ order convergent in time, where $ r$ refers to a gradation parameter and $\nu$ represents the fractional derivative. The results are then presented in numerical applications, looking at how it compares with other sophisticated schemes in the literature. The main benefit of the proposed scheme is the efficiency with regard to accuracy as compared to other available schemes.

    MSC: 65J15, 65G99, 35B35, 35R11
  • 加载中
  • [1] M. Abbaszadeh and M. Dehghan, The Crank-Nicolson/interpolating stabilized element-free Galerkin method to investigate the fractional Galilei invariant advection‐diffusion equation, Mathematical Methods in the Applied Sciences, 2021, 44(4), 2752-2768. doi: 10.1002/mma.5871

    CrossRef Google Scholar

    [2] A. Babaei and S. Banihashemi, Reconstructing unknown nonlinear boundary conditions in a time‐fractional inverse reaction-diffusion-convection problem, Numerical Methods for Partial Differential Equations, 2019, 35(3), 976-992. doi: 10.1002/num.22334

    CrossRef Google Scholar

    [3] A. Babaei and S. Banihashemi, Stable numerical approach to solve a time-fractional inverse heat conduction problem, Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42(4), 2225-2236. doi: 10.1007/s40995-017-0360-4

    CrossRef Google Scholar

    [4] A. Babaei, H. Jafari, S. Banihashemi and M. Ahmadi, Mathematical analysis of a stochastic model for spread of Coronavirus, Chaos, Solitons and Fractals, 2021, 145, 110788. doi: 10.1016/j.chaos.2021.110788

    CrossRef Google Scholar

    [5] D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional calculus: models and numerical methods, World Scientific, Singapore, 2012.

    Google Scholar

    [6] D. Baleanu and B. Shiri, Nonlinear higher order fractional terminal value problems, AIMS Mathematics, 2022, 7(5), 7489-7506. doi: 10.3934/math.2022420

    CrossRef Google Scholar

    [7] E. F. Browder, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, Proceedings of the Symposia in Applied Mathematics, Providence, AMS, 1965, 1724-29.

    Google Scholar

    [8] H. Brunner, The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes, Mathematics Computation, 1985, 45, 417-437. doi: 10.1090/S0025-5718-1985-0804933-3

    CrossRef Google Scholar

    [9] H. Brunner, L. Ling and M. Yamamoto, Numerical simulations of 2D fractional subdiffusion problems, Journal of Computational Physics, 2010, 229, 6613-6622. doi: 10.1016/j.jcp.2010.05.015

    CrossRef Google Scholar

    [10] W. Cao, Y. Xu and Z. Zheng, Finite difference/collocation method for a generalized time-fractional KdV equation, Applied Sciences, 2018, 8(1), 42, https://doi.org/10.3390/app8010042. doi: 10.3390/app8010042

    CrossRef Google Scholar

    [11] A. El-Ajou, O. A. Arqub and S. Momani, Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm, Journal of Computational Physics, 2015, 293, 81-95. doi: 10.1016/j.jcp.2014.08.004

    CrossRef Google Scholar

    [12] R. Erfanifar, K. Sayevand, N. Ghanbari and H. Esmaeili, A modified Chebyshev ϑ-weighted Crank-Nicolson method for analyzing fractional sub-diffusion equations, Numerical Methods for Partial Differential Equations, 2021, 37(1), 614-625. doi: 10.1002/num.22543

    CrossRef Google Scholar

    [13] R. M. Ganji, H. Jafari, S. P. Moshokoa and N. S. Nkomo, A mathematical model and numerical solution for brain tumor derived using fractional operator, Results in Physics, 2021, 28, 104671. doi: 10.1016/j.rinp.2021.104671

    CrossRef Google Scholar

    [14] S. Jiang, J. Zhang, Q. Zhang and Z. Zhang, Fast evalution of the caputo fractional derivative and its applications to fractional diffusion equations, Communications in Computational Physics, 2017, 21, 650-678. doi: 10.4208/cicp.OA-2016-0136

    CrossRef Google Scholar

    [15] D. J. Kordeweg and G. Vries, On the change of form of long waves advancing in a rectangular channel, and a new type of long stationary wave, Philosophical Magazine, 1895, 39, 422-443.

    Google Scholar

    [16] C. Li and M. Cai, Theory and numerical approximations of fractional integrals and derivatives, Society for Industrial and Applied Mathematics, 2019, https://doi.org/10.1137/1.9781611975888. doi: 10.1137/1.9781611975888

    CrossRef Google Scholar

    [17] H. Liao, D. Li and J. Zhang, Sharp error estimate of the nonuniform l1 formula for linear reaction-subdiffusion equations, SIAM Journal on Numerical Analysis, 2018, 56(2), 1112-1133. doi: 10.1137/17M1131829

    CrossRef Google Scholar

    [18] N. H. Luc, H. Jafari and P. Kumam, On an initial value problem for time fractional pseudo-parabolic equation with Caputo derivarive, Mathematical Methods in the Applied Sciences, 2021, https://doi.org/10.1002/mma.7204. doi: 10.1002/mma.7204

    CrossRef Google Scholar

    [19] S. Momani, An explicit and numerical solutions of the fractional KdV equation, Mathematics and Computer in Simulation, 2005, 70(2), 110-118. doi: 10.1016/j.matcom.2005.05.001

    CrossRef Google Scholar

    [20] K. Mustapha, An implicit finite difference time-stepping method for a subdiffusion equation with spatial discretization by finite elements, IMA Journal of Numerical Analysis, 2011, 31, 719-739. doi: 10.1093/imanum/drp057

    CrossRef Google Scholar

    [21] M. Sajjadian, Numerical solutions of Korteweg de Vries and Korteweg de Vries-Burger's equations using computer programming, International Journal of Nonlinear Science, 2013, 15(1), 69-79.

    Google Scholar

    [22] K. Sayevand, N. Ghanbari and I. Masti, A robust computational framework for analyzing the Bloch-Torrey equation of fractional order, Computational and Applied Mathematics, 2021, 40(4), 1-21.

    Google Scholar

    [23] K. Sayevand, J. T. Machado and I. Masti, Analysis of dual Bernstein operators in the solution of the fractional convection-diffusion equation arising in underground water pollution, Journal of Computational and Applied Mathematics, 2022, 399, 113729. doi: 10.1016/j.cam.2021.113729

    CrossRef Google Scholar

    [24] K. Sayevand, J. T. Machado and I. Masti, On dual Bernstein polynomials and stochastic fractional integro-differential equations, Mathematical Methods in the Applied Sciences, 2020, 43(17), 9928-9947. doi: 10.1002/mma.6667

    CrossRef Google Scholar

    [25] Y. Shen, Z. Sun and R. Du, Fast finite difference schemes for the time-fractional diffusion equations with a weak singularity at the initial time, East Asian Journal on Applied Mathematics, 2018, 8(4), 834-858. doi: 10.4208/eajam.010418.020718

    CrossRef Google Scholar

    [26] J. Shen, Z. Sun and W. Cao, A finite difference scheme on graded meshes for time-fractional nonlinear Korteweg-de Vries equation, Applied Mathematics and Computation, 2019, 361, 752-765. doi: 10.1016/j.amc.2019.06.023

    CrossRef Google Scholar

    [27] A. Shidfar and A. Babaei, The Sinc-Galerkin method for solving an inverse parabolic problem with unknown source term, Numerical Methods for Partial Differential Equations, 2013, 29, 64-78. doi: 10.1002/num.21699

    CrossRef Google Scholar

    [28] M. Stynes, E. ORiordan and J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM Journal on Numerical Analysis, 2015, 55(2), 1057-1079.

    Google Scholar

    [29] H. Sun and Z. Sun, On two linearized difference schemes for burgers equation, International Journal of Computer Mathematics, 2015, 92(6), 1160-1179. doi: 10.1080/00207160.2014.927059

    CrossRef Google Scholar

    [30] A. Taghavi, A. Babaei and A. Mohammadpour, A stable numerical scheme for a time-fractional inverse parabolic equation, Inverse Problems in Science and Engineering, 2017, 25(10), 1474-1491. doi: 10.1080/17415977.2016.1267169

    CrossRef Google Scholar

    [31] Q. Wang, Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method, Applied Mathematics and Computation, 2006, 182, 1048-1055. doi: 10.1016/j.amc.2006.05.004

    CrossRef Google Scholar

    [32] Y. Zhang, Z. Sun and H. Liao, Finite difference methods for the time fractional diffusion equation on nonuniform meshes, Journal of Computational Physics, 2014, 265, 195-210. doi: 10.1016/j.jcp.2014.02.008

    CrossRef Google Scholar

Figures(5)  /  Tables(12)

Article Metrics

Article views(1778) PDF downloads(317) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint