2023 Volume 13 Issue 3
Article Contents

José R. Quintero, Alex M. Montes, Ricardo Córdoba. ON THE ORBITAL STABILITY OF A BOUSSINESQ SYSTEM[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1475-1504. doi: 10.11948/20220323
Citation: José R. Quintero, Alex M. Montes, Ricardo Córdoba. ON THE ORBITAL STABILITY OF A BOUSSINESQ SYSTEM[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1475-1504. doi: 10.11948/20220323

ON THE ORBITAL STABILITY OF A BOUSSINESQ SYSTEM

  • In this paper we establish the orbital stability of ground state solitary waves for a nonlinear one-dimensional Boussinesq system that models the evolution of two dimensional long water waves with small amplitude in the presence of surface tension. We also discuss the well-posedness for the Boussinesq system, using some Strichartz type estimates associated with the system and lowering the Sobolev index obtained in some previous results.

    MSC: 35E15, 35C08, 377K45, 35Q35
  • 加载中
  • [1] C. Li and J. Llibre, Uniqueness of limit cycles for Lienard differential equations of degree four, J. Diff. Eqs., 2012, 252(4), 3142-3162. doi: 10.1016/j.jde.2011.11.002

    CrossRef Google Scholar

    [2] J. Angulo and N. Goloshchapova, Stability properties of standing waves for NLS equations with the δ'-interaction, Physica D: Nonlinear Phenomena, 2020, 403, 132332. doi: 10.1016/j.physd.2020.132332

    CrossRef Google Scholar

    [3] J. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equations, Discret. Contin. Dyn. Syst., 2009, 23, 1241-1252. doi: 10.3934/dcds.2009.23.1241

    CrossRef Google Scholar

    [4] J. Bona, P. Souganidis and W. Strauss, Stability and instability of solitary waves of Korteweg de Vries type equation, Proc. Roy. Soc. London, 1987, Ser. A, 411, 395-412.

    Google Scholar

    [5] Y. Cho and M. Lee, On the orbital stability of inhomoneneous nonlinear Schrödinger equations with singular potential, Bulletin of the Korean Mathematical Society, 2019, 56(6), 1601-1615.

    Google Scholar

    [6] F. Cristófani, F. Natali and A. Pastor, Periodic traveling-wave solutions for regularized dispersive equations: sufficient conditions for orbital stability with applications, Communications in Mathematical Sciences, 2020, 18(3), 613-634. doi: 10.4310/CMS.2020.v18.n3.a2

    CrossRef Google Scholar

    [7] E. Csobo, Existence and orbital stability of standing waves to a nonlinear Schrödinger equation with inverse square potential on the half-line, Nonlinear Differ. Equ. Appl., 2021, 28, 1-32. doi: 10.1007/s00030-020-00664-6

    CrossRef Google Scholar

    [8] A. de Bouard and J. Saut, Remarks on the stability of generalized KP solitary waves, Comtemp. Math., 1996, 200, 75-84.

    Google Scholar

    [9] M. Fontaine, M. Lemou and F. Méhats, Stable ground states for the HMF Poisson model, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2019, 36, 217-255. doi: 10.1016/j.anihpc.2018.05.002

    CrossRef Google Scholar

    [10] R. Fukuizumi, Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential, Discrete contin. Dynam. Syst., 2001, 7, 525-544. doi: 10.3934/dcds.2001.7.525

    CrossRef Google Scholar

    [11] M. Grillakis, J. Shatah and W. Strauss, Stability Theory of Solitary Waves in Presence of Symmetry, I, Functional Anal., 1987, 74, 160-197. doi: 10.1016/0022-1236(87)90044-9

    CrossRef Google Scholar

    [12] T. Kato, Quasilinear equations of evolution, with applications to partial differential equations, Proceedings of the symposium at Dundee, Lecture Notes in Mathematics, 1975, 448, 25-70.

    Google Scholar

    [13] T. Kato, On the Korteweg-De Vries equation, Manuscripta Mathematica, 1979, 28, 89-99. doi: 10.1007/BF01647967

    CrossRef Google Scholar

    [14] T. Kato, On the Cauchy problem for the (generalized) Korteweg-De Vries equation, Studies in Applied Mathematics, Advances in mathematics, Supplementary Studies, Academic Press, 1983, 8, 92-128.

    Google Scholar

    [15] C. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 1991, 40, 33-69. doi: 10.1512/iumj.1991.40.40003

    CrossRef Google Scholar

    [16] C. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 1991, 4, 323-347. doi: 10.1090/S0894-0347-1991-1086966-0

    CrossRef Google Scholar

    [17] F. Linares, Global existence of small solutions for a generalized Boussinesq equation, J. Diff. Eq., 1993, 106, 257-293. doi: 10.1006/jdeq.1993.1108

    CrossRef Google Scholar

    [18] F. Linares and A. Milanes, Local and global well-posedness for the Ostrovsky equation, J. Differential Equations, 2006, 222, 325-340. doi: 10.1016/j.jde.2005.07.023

    CrossRef Google Scholar

    [19] Y. Liu and X. Wang, Nonlinear stablitity of solitary waves of a generalized Kadomtsev-Petviashvili equation, Comm. Math. Phys., 1997, 183, 253-266. doi: 10.1007/BF02506406

    CrossRef Google Scholar

    [20] A. Montes, Boussinesq-Benney-Luke type systems related with water wave models, Doctoral Thesis, Universidad del Valle (Colombia), 2013.

    Google Scholar

    [21] A. Montes and R. Córdoba, Local well-posedness for a class of 1D Boussinesq system, Mathematical Control and Related Fields, 2022, 12(2), 447-473. doi: 10.3934/mcrf.2021030

    CrossRef Google Scholar

    [22] J. Quintero, Nonlinear stability of a one-dimensional Boussinesq equation, Dynam. Diff. Eq., 2003, 15, 125-142. doi: 10.1023/A:1026109529292

    CrossRef Google Scholar

    [23] J. Quintero, Nonlinear stability of solitary waves for a 2-D Benney-Luke equation, Discrete Contin. Dynam. Systems, 2005, 13, 203-218. doi: 10.3934/dcds.2005.13.203

    CrossRef Google Scholar

    [24] J. Quintero, Solitary water waves for a 2D Boussinesq type system, J. Partial Differentail Equations, 2010, 23, 251-280.

    Google Scholar

    [25] J. Quintero, The Cauchy problem and stability of solitary waves for a 2D Boussinesq-KdV type system, Diff. and Int. Eq., 2010, 23, 325-360.

    Google Scholar

    [26] J. Quintero, Stability of 2D solitons for a sixth order Boussinesq type model, Commun. Math. Sci., 2015, 13, 1379-1406. doi: 10.4310/CMS.2015.v13.n6.a2

    CrossRef Google Scholar

    [27] J. Quintero, Stability and instability analysis for the standing waves for a generalized Zakharov-Rubenchik system, Proyecciones (Antofagasta, On line), 2022, 41(3), 663-682. doi: 10.22199/issn.0717-6279-4547

    CrossRef Google Scholar

    [28] J. Quintero and J. Cordero, Instability of the standing waves for a Benney-Roskes/Zakharov-Rubenchik system and blow-up for the Zakharov equations, Discrete and Continuous Dynamical Systems-B, 2020, 25(4), 1213-1240. doi: 10.3934/dcdsb.2019217

    CrossRef Google Scholar

    [29] J. Quintero and A. Montes, Existence, physical sense and analyticity of solitons for a 2D Boussinesq-Benney-Luke System, Dynamics of PDE, 2013, 4, 313-342.

    Google Scholar

    [30] J. Quintero and A. Montes, On the Cauchy and solitons for a class of 1D Boussinesq systems, Differ. Equ. Dyn. Syst., 2016, 24, 367-389. doi: 10.1007/s12591-015-0264-8

    CrossRef Google Scholar

    [31] J. Shatah, Stable standing waves of nonlinear Klein-Gordon equations, Comm. Math. Phys. A., 1983, 91, 313-327. doi: 10.1007/BF01208779

    CrossRef Google Scholar

    [32] X. Zheng, J. Xin and X. Peng, Orbital stability of periodic traveling wave solutions to the generalized long-short wave equations, Journal of Applied Analysis & Computation, 2019, 9(6), 2389-2408.

    Google Scholar

Article Metrics

Article views(1766) PDF downloads(306) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint