2023 Volume 13 Issue 3
Article Contents

Meina Gao. QUASI-PERIODIC SOLUTIONS FOR 1D NONLINEAR WAVE EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1505-1534. doi: 10.11948/20220334
Citation: Meina Gao. QUASI-PERIODIC SOLUTIONS FOR 1D NONLINEAR WAVE EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1505-1534. doi: 10.11948/20220334

QUASI-PERIODIC SOLUTIONS FOR 1D NONLINEAR WAVE EQUATION

  • Corresponding author: Email: mngao@sspu.edu.cn (M. Gao)
  • Fund Project: The author was supported by National Natural Science Foundation of China (11971299)
  • In this paper, one-dimensional (1D) nonlinear wave equation

    $ u_{tt}-u_{xx}+mu+u^{7}=0 $

    on the finite $ x $-interval $ [0, \pi] $ with Dirichlet boundary conditions is considered. It is proved that there are many $ 3 $-dimensional elliptic invariant tori, and thus quasi-periodic solutions for the above equation. This is an extension of the previous work [11] by the same author, where many $ 2 $-dimensional elliptic invariant tori for the above equation are obtained. The proof is based on infinite-dimensional KAM theory and partial Birkhoff normal form.

    MSC: 37K55, 35B10, 35B20
  • 加载中
  • [1] D. Bambusi, On long time stability in Hamiltonian perturbations of non-resonant linear PDEs, Nonlinearity, 1999, 12, 823–850. doi: 10.1088/0951-7715/12/4/305

    CrossRef Google Scholar

    [2] P. Baldi, M. Berti, E. Haus and R. Montalto, Time quasi-periodic gravity water waves in finite depth, Invent. math., 2018, 214, 739–911. doi: 10.1007/s00222-018-0812-2

    CrossRef Google Scholar

    [3] M. Berti, L. Biasco and M. Procesi, KAM theory for the Hamiltonian DNLW, Ann. Sci. Ec. Norm. Super., 2013, 46, 301–373. doi: 10.24033/asens.2190

    CrossRef Google Scholar

    [4] M. Berti, L. Biasco and M. Procesi, KAM theory for the reversible derivative wave equation, Arch. Rat. Mech. Anal., 2014, 212, 905–955. doi: 10.1007/s00205-014-0726-0

    CrossRef Google Scholar

    [5] M. Berti, R. Feola and L. Franzoi, Quadratic life span of periodic gravity-capillary water waves, Water Waves, 2021, 3(1), 85–115. doi: 10.1007/s42286-020-00036-8

    CrossRef Google Scholar

    [6] M. Berti, R. Feola and F. Pusateri, Birkhoff normal form for gravity water waves, Water Waves, 2021, 3(1), 117–126. doi: 10.1007/s42286-020-00024-y

    CrossRef Google Scholar

    [7] M. Berti, L. Franzoi and A. Maspero, Traveling Quasi-periodic water waves with constant vorticity, Arch. Rational Mech. Anal., 2021, 240, 99–202. doi: 10.1007/s00205-021-01607-w

    CrossRef Google Scholar

    [8] J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and application to nonlinear PDE, Int. Math. Res. Not., 1994, 11, 495–497.

    Google Scholar

    [9] L. Chierchia and J. You, KAM tori for 1D nonlinear wave equations under periodic boundary conditions, Commun. Math. Phys., 2000, 211, 497–525. doi: 10.1007/s002200050824

    CrossRef Google Scholar

    [10] H. Cong, C. Liu and P. Wang, A Nekhoroshev type theorem for the nonlinear wave equation, J. Differential Equations, 2020, 269, 3853–3889. doi: 10.1016/j.jde.2020.03.015

    CrossRef Google Scholar

    [11] M. Gao, Quasi-periodic solutions for 1D wave equation with the nonlinearity $u^{2p+1}$, J. Math. Anal. Appl., 2014, 410, 783–806. doi: 10.1016/j.jmaa.2013.08.066

    CrossRef $u^{2p+1}$" target="_blank">Google Scholar

    [12] M. Gao and J. Liu, Quasi-periodic solutions for 1D wave equation with higher order nonlinearity, J. Differential Equations, 2012, 252, 1466–1493. doi: 10.1016/j.jde.2011.10.006

    CrossRef Google Scholar

    [13] M. Gao and J. Liu, Invariant tori for 1D quintic nonlinear wave equation, J. Differential Equations, 2017, 263, 8533–8564. doi: 10.1016/j.jde.2017.08.057

    CrossRef Google Scholar

    [14] S. B. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum, Funkt. Anal. Prilozh., 1987, 21 (3) 22–37. English translation in Funct. Anal. Appl., 1987, 21, 192–205.

    Google Scholar

    [15] S. B. Kuksin, Perturbations of quasiperiodic solutions of infinite-dimensional Hamiltonian systems, Izv. Akad. Nauk SSSR Ser. Mat., 1988, 52, 41–63. English translation in Math. USSR Izv., 1989, 32 (1), 39–62.

    Google Scholar

    [16] S. B. Kuksin, Nearly Integrable Infinite-Dimensional Hamiltonian Systems, Springer-Verlag, Berlin, 1993.

    Google Scholar

    [17] S. B. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math., 1996, 143, 149–179. doi: 10.2307/2118656

    CrossRef Google Scholar

    [18] J. Pöschel, Quasi-periodic solutions for nonlinear wave equations, Comment. Math. Helv., 1996, 71, 269–296. doi: 10.1007/BF02566420

    CrossRef Google Scholar

    [19] J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Sc. Norm. Super. Pisa, 1996, 23, 119–148.

    Google Scholar

    [20] C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Commun. Math. Phys., 1990, 127, 479–528. doi: 10.1007/BF02104499

    CrossRef Google Scholar

    [21] J. Xu, J. You and Q. Qiu, Invariant tori for nearly integrable Hamiltonian systems with degeneracy, Math. Z., 1997, 226, 375–387. doi: 10.1007/PL00004344

    CrossRef Google Scholar

    [22] X. Yuan, Invariant manifold of hyperbolic-elliptic type for nonlinear wave equation, Int. J. Math. Science, 2003, 18, 1111–1136.

    Google Scholar

    [23] X. Yuan, Quasi-periodic solutions of completely rsonant nonlinear wave equations, J. Differential Equations, 2006, 195, 230–242.

    Google Scholar

    [24] X. Yuan, Invariant tori of nonlinear wave equations with a given poential, Discrete Contin. Dyn. Syst., 2006, 16(3), 615–634.

    Google Scholar

Article Metrics

Article views(1567) PDF downloads(276) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint