2023 Volume 13 Issue 3
Article Contents

Yi Wang, Lixin Tian, Minjie Dong. MULTIPLE SOLUTIONS FOR A KIRCHHOFF-TYPE FRACTIONAL COUPLED PROBLEM WITH P-LAPLACIAN[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1535-1555. doi: 10.11948/20220341
Citation: Yi Wang, Lixin Tian, Minjie Dong. MULTIPLE SOLUTIONS FOR A KIRCHHOFF-TYPE FRACTIONAL COUPLED PROBLEM WITH P-LAPLACIAN[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1535-1555. doi: 10.11948/20220341

MULTIPLE SOLUTIONS FOR A KIRCHHOFF-TYPE FRACTIONAL COUPLED PROBLEM WITH P-LAPLACIAN

  • In this paper, we look at a class of two-parameters coupled Kirchhoff-type fractional differential equations. Two differentiated methods are used to prove the existence of two solutions to the equation. The fundamental difference between the two methods is that the first provides asymptotic conditions for the non-linear terms on the right-hand side of the equation, while the second provides algebraic conditions; both methods combine substantial A-R conditions.

    MSC: 26A33, 35A15, 58E05
  • 加载中
  • [1] G. Bonanno, Relations between the mountain pass theorem and local minima, Adv. Nonlinear Anal., 2012, 1(3), 205–220.

    Google Scholar

    [2] G. Chai and W. Liu, Existence of solutions for the fractional Kirchhoff equations with sign-changing potential, Bound. Value Probl., 2018. DOI: 10.1186/s13661-018-1046-3.

    CrossRef Google Scholar

    [3] T. Chen, W. Liu and H. Jin, Nontrivial solutions of the Kirchhoff-type fractional p-Laplacian Dirichlet problem, J. Funct. Spaces, 2020. DOI: 10.1155/2020/8453205.

    CrossRef Google Scholar

    [4] G. Fix and J. Roop, Least squares finite-element solution of a fractional order two-point boundary value problem, Comput. Math. Appl., 2004, 48(7–8), 1017–1033. doi: 10.1016/j.camwa.2004.10.003

    CrossRef Google Scholar

    [5] S. Heidarkhani and A. Salari, Nontrivial solutions for impulsive fractional differential systems through variational methods, Math. Meth. Appl. Sci., 2020, 43(10), 6529–6541. doi: 10.1002/mma.6396

    CrossRef Google Scholar

    [6] F. Jiao and Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 2011, 62(3), 1181–1199. doi: 10.1016/j.camwa.2011.03.086

    CrossRef Google Scholar

    [7] F. Jiao and Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Int. J. Bifurcation Chaos, 2012, 22(4), 1250086. doi: 10.1142/S0218127412500861

    CrossRef Google Scholar

    [8] F. Kamache, R. Guefaifia and S. Boulaaras, Existence of three solutions for perturbed nonlinear fractional p-Laplacian boundary value systems with two control parameters, J. Pseudo-Differ. Oper. Appl., 2020, 11(4), 1781–1803. doi: 10.1007/s11868-020-00354-y

    CrossRef Google Scholar

    [9] F. Kamache, R. Guefaifia, S. Boulaaras and A. Alharbi, Existence of weak solutions for a new class of fractional p-Laplacian boundary value systems, Mathematics, 2020, 8(4), 475. doi: 10.3390/math8040475

    CrossRef Google Scholar

    [10] D. Kang, C. Liu and X. Zhang, Existence of solutions for Kirchhoff-type fractional Dirichlet problem with p-Laplacian, Mathematics, 2020. DOI: 10.3390/math8010106.

    CrossRef Google Scholar

    [11] A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

    Google Scholar

    [12] M. Kratou, Ground state solutions of p-Laplacian singular Kirchhoff problem involving a Riemann-Liouville fractional derivative, Filomat, 2019, 33(7), 2073–2088. doi: 10.2298/FIL1907073K

    CrossRef Google Scholar

    [13] D. Li, F. Chen and Y. An, The multiplicity of solutions for a class of nonlinear fractional Dirichlet boundary value problems with p-Laplacian type via variational approach, Int. J. Nonlinear Sci. Numer. Simul., 2019, 20(3–4), 361–371. doi: 10.1515/ijnsns-2018-0102

    CrossRef Google Scholar

    [14] D. Li, F. Chen and Y. An, Existence and multiplicity of nontrivial solutions for nonlinear fractional differential systems with p-Laplacian via critical point theory, Math. Meth. Appl. Sci., 2018, 41(8), 3197–3212. doi: 10.1002/mma.4810

    CrossRef Google Scholar

    [15] D. Ma, L. Liu and Y. Wu, Existence of nontrivial solutions for a system of fractional advection-dispersion equations, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 2019, 113(2), 1041–1057. doi: 10.1007/s13398-018-0527-7

    CrossRef Google Scholar

    [16] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, Berlin, 1989.

    Google Scholar

    [17] D. Min and F. Chen, Three solutions for a class of fractional impulsive advection-dispersion equations with Sturm-Liouville boundary conditions via variational approach, Math. Meth. Appl. Sci., 2020, 43(15), 9151–9168. doi: 10.1002/mma.6608

    CrossRef Google Scholar

    [18] N. Nyamoradi and E. Tayyebi, Existence of solutions for a class of fractional boundary value equations with impulsive effects via critical point theory, Mediterr. J. Math., 2018, 15(3), 1–25.

    Google Scholar

    [19] N. Nyamoradi, Y. Zhou, E. Tayyebi, B. Ahmad and A. Alsaedi, Nontrivial solutions for time fractional nonlinear Schrödinger-Kirchhoff type equations, Discrete Dyn. Nat. Soc., 2017. DOI: 10.1155/2017/9281049.

    CrossRef Google Scholar

    [20] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

    Google Scholar

    [21] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, American Mathematical Society, Providence, 1986.

    Google Scholar

    [22] S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Application, Gordon and Breach Science Publishers, New York, 1993.

    Google Scholar

    [23] J. Simon, Régularité de la solution d'un problème aux limites non linéaires, Ann. Fac. Sci. Toulouse, 1981, 3, 247–274. doi: 10.5802/afst.569

    CrossRef Google Scholar

    [24] Y. Tian and J. Nieto, The applications of critical-point theory to discontinuous fractional-order differential equations, Proc. Edinb. Math. Soc., 2017, 60(4), 1021–1051. doi: 10.1017/S001309151600050X

    CrossRef Google Scholar

    [25] E. Zeidler, Nonlinear Functional Analysis and its Applications, Ⅲ: Variational Methods and Optimization, Springer, New York, 1985.

    Google Scholar

    [26] Y. Zhao, C. Luo and H. Chen, Existence results for non-instantaneous impulsive nonlinear fractional differential equation via variational methods, Bull. Malays. Math. Sci. Soc., 2020, 43(3), 2151–2169. doi: 10.1007/s40840-019-00797-7

    CrossRef Google Scholar

Article Metrics

Article views(1618) PDF downloads(316) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint