Citation: | Yi Wang, Lixin Tian, Minjie Dong. MULTIPLE SOLUTIONS FOR A KIRCHHOFF-TYPE FRACTIONAL COUPLED PROBLEM WITH P-LAPLACIAN[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1535-1555. doi: 10.11948/20220341 |
In this paper, we look at a class of two-parameters coupled Kirchhoff-type fractional differential equations. Two differentiated methods are used to prove the existence of two solutions to the equation. The fundamental difference between the two methods is that the first provides asymptotic conditions for the non-linear terms on the right-hand side of the equation, while the second provides algebraic conditions; both methods combine substantial A-R conditions.
[1] | G. Bonanno, Relations between the mountain pass theorem and local minima, Adv. Nonlinear Anal., 2012, 1(3), 205–220. |
[2] | G. Chai and W. Liu, Existence of solutions for the fractional Kirchhoff equations with sign-changing potential, Bound. Value Probl., 2018. DOI: 10.1186/s13661-018-1046-3. |
[3] | T. Chen, W. Liu and H. Jin, Nontrivial solutions of the Kirchhoff-type fractional p-Laplacian Dirichlet problem, J. Funct. Spaces, 2020. DOI: 10.1155/2020/8453205. |
[4] | G. Fix and J. Roop, Least squares finite-element solution of a fractional order two-point boundary value problem, Comput. Math. Appl., 2004, 48(7–8), 1017–1033. doi: 10.1016/j.camwa.2004.10.003 |
[5] | S. Heidarkhani and A. Salari, Nontrivial solutions for impulsive fractional differential systems through variational methods, Math. Meth. Appl. Sci., 2020, 43(10), 6529–6541. doi: 10.1002/mma.6396 |
[6] | F. Jiao and Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 2011, 62(3), 1181–1199. doi: 10.1016/j.camwa.2011.03.086 |
[7] | F. Jiao and Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Int. J. Bifurcation Chaos, 2012, 22(4), 1250086. doi: 10.1142/S0218127412500861 |
[8] | F. Kamache, R. Guefaifia and S. Boulaaras, Existence of three solutions for perturbed nonlinear fractional p-Laplacian boundary value systems with two control parameters, J. Pseudo-Differ. Oper. Appl., 2020, 11(4), 1781–1803. doi: 10.1007/s11868-020-00354-y |
[9] | F. Kamache, R. Guefaifia, S. Boulaaras and A. Alharbi, Existence of weak solutions for a new class of fractional p-Laplacian boundary value systems, Mathematics, 2020, 8(4), 475. doi: 10.3390/math8040475 |
[10] | D. Kang, C. Liu and X. Zhang, Existence of solutions for Kirchhoff-type fractional Dirichlet problem with p-Laplacian, Mathematics, 2020. DOI: 10.3390/math8010106. |
[11] | A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. |
[12] | M. Kratou, Ground state solutions of p-Laplacian singular Kirchhoff problem involving a Riemann-Liouville fractional derivative, Filomat, 2019, 33(7), 2073–2088. doi: 10.2298/FIL1907073K |
[13] | D. Li, F. Chen and Y. An, The multiplicity of solutions for a class of nonlinear fractional Dirichlet boundary value problems with p-Laplacian type via variational approach, Int. J. Nonlinear Sci. Numer. Simul., 2019, 20(3–4), 361–371. doi: 10.1515/ijnsns-2018-0102 |
[14] | D. Li, F. Chen and Y. An, Existence and multiplicity of nontrivial solutions for nonlinear fractional differential systems with p-Laplacian via critical point theory, Math. Meth. Appl. Sci., 2018, 41(8), 3197–3212. doi: 10.1002/mma.4810 |
[15] | D. Ma, L. Liu and Y. Wu, Existence of nontrivial solutions for a system of fractional advection-dispersion equations, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 2019, 113(2), 1041–1057. doi: 10.1007/s13398-018-0527-7 |
[16] | J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, Berlin, 1989. |
[17] | D. Min and F. Chen, Three solutions for a class of fractional impulsive advection-dispersion equations with Sturm-Liouville boundary conditions via variational approach, Math. Meth. Appl. Sci., 2020, 43(15), 9151–9168. doi: 10.1002/mma.6608 |
[18] | N. Nyamoradi and E. Tayyebi, Existence of solutions for a class of fractional boundary value equations with impulsive effects via critical point theory, Mediterr. J. Math., 2018, 15(3), 1–25. |
[19] | N. Nyamoradi, Y. Zhou, E. Tayyebi, B. Ahmad and A. Alsaedi, Nontrivial solutions for time fractional nonlinear Schrödinger-Kirchhoff type equations, Discrete Dyn. Nat. Soc., 2017. DOI: 10.1155/2017/9281049. |
[20] | I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. |
[21] | P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, American Mathematical Society, Providence, 1986. |
[22] | S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Application, Gordon and Breach Science Publishers, New York, 1993. |
[23] | J. Simon, Régularité de la solution d'un problème aux limites non linéaires, Ann. Fac. Sci. Toulouse, 1981, 3, 247–274. doi: 10.5802/afst.569 |
[24] | Y. Tian and J. Nieto, The applications of critical-point theory to discontinuous fractional-order differential equations, Proc. Edinb. Math. Soc., 2017, 60(4), 1021–1051. doi: 10.1017/S001309151600050X |
[25] | E. Zeidler, Nonlinear Functional Analysis and its Applications, Ⅲ: Variational Methods and Optimization, Springer, New York, 1985. |
[26] | Y. Zhao, C. Luo and H. Chen, Existence results for non-instantaneous impulsive nonlinear fractional differential equation via variational methods, Bull. Malays. Math. Sci. Soc., 2020, 43(3), 2151–2169. doi: 10.1007/s40840-019-00797-7 |