2023 Volume 13 Issue 2
Article Contents

Ting Gong, Zhe Pu, Dingshi Li. UPPER SEMICONTINUITY OF UNIFORM RANDOM ATTRACTORS FOR DELAY PARABOLIC EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 928-953. doi: 10.11948/20220239
Citation: Ting Gong, Zhe Pu, Dingshi Li. UPPER SEMICONTINUITY OF UNIFORM RANDOM ATTRACTORS FOR DELAY PARABOLIC EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 928-953. doi: 10.11948/20220239

UPPER SEMICONTINUITY OF UNIFORM RANDOM ATTRACTORS FOR DELAY PARABOLIC EQUATION

  • Corresponding author: Email: zhepuws@my.swjtu.edu.cn(Z. Pu) 
  • Fund Project: The authors were supported by NSFC (11971394), Central Government Funds for Guiding Local Scientific and Technological Development (2021ZYD0010) and Fundamental Research Funds for the Central Universities (2682021ZTPY057)
  • This paper concentrates on the upper semicontinuity of uniform random attractors for a class of delay parabolic equations with additive noise and nonautonomous external force terms. Firstly, through the uniform estimation of the solution, it is proved that the solution of the equation has a closed uniform pullback absorbing set with respect to the symbolic space. Then, by Arzela-Ascoli theorem, we prove uniformly pullback compactness of solutions as well as the existence and uniqueness of uniform random attractors. Finally, we prove the upper semicontinuity of the uniform random attractors when time delay approaches to zero.

    MSC: 35B40, 35B41, 37L30
  • 加载中
  • [1] P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 2009, 246(2), 845–869. doi: 10.1016/j.jde.2008.05.017

    CrossRef Google Scholar

    [2] T. Caraballo, I. D. Chueshov and P. E. Kloeden, Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain, SIAM J. Math. Anal., 2007, 38(5), 1489–1507. doi: 10.1137/050647281

    CrossRef Google Scholar

    [3] T. Caraballo, J. Real and I. D. Chueshov, Pullback attractors for stochastic heat equations in materials with memory, Discrete Contin. Dyn. Syst. Ser. B, 2008, 9(3/4), 525–539. doi: 10.3934/dcdsb.2008.9.525

    CrossRef Google Scholar

    [4] H. Cui, A. C. Cunha and J. A. Langa, Finite-dimensionality of tempered random uniform attractors, J. Nonlinear Sci., 2022, 32(1), 1–55. doi: 10.1007/s00332-021-09760-y

    CrossRef Google Scholar

    [5] H. Cui and J. A. Langa, Uniform attractors for non-autonomous random dynamical systems, J. Differ. Equ., 2017, 263(2), 1225–1268. doi: 10.1016/j.jde.2017.03.018

    CrossRef Google Scholar

    [6] H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Differ. Equ., 1997, 9(2), 307–341. doi: 10.1007/BF02219225

    CrossRef Google Scholar

    [7] H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Relat. Field, 1994, 100(3), 365–393. doi: 10.1007/BF01193705

    CrossRef Google Scholar

    [8] F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise, Stochastics, 1996, 59(1), 21–45.

    Google Scholar

    [9] Z. Han and S. Zhou, Random uniform attractor and random cocycle attractor for non-autonomous stochastic Fitz Hugh-Nagumo system on unbounded domains, Stochastics, 2021, 93(5), 742–763. doi: 10.1080/17442508.2020.1801683

    CrossRef Google Scholar

    [10] P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. A-Math. Phys. Eng. Sci., 2007, 463(2077), 163–181.

    Google Scholar

    [11] D. Li, K. Lu, B. Wang and X. Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discret. Contin. Dyn. Syst., 2018, 38(1), 187–208. doi: 10.3934/dcds.2018009

    CrossRef Google Scholar

    [12] D. Li, K. Lu, B. Wang and X. Wang, Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains, Discret. Contin. Dyn. Syst., 2019, 39(7), 3717–3747. doi: 10.3934/dcds.2019151

    CrossRef Google Scholar

    [13] D. Li, B. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differ. Equ., 2016, 262(2), 1575–1602.

    Google Scholar

    [14] Z. Shen, S. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differ. Equ., 2010, 248(6), 1432–1457. doi: 10.1016/j.jde.2009.10.007

    CrossRef Google Scholar

    [15] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 2012, 253(5), 1544–1583. doi: 10.1016/j.jde.2012.05.015

    CrossRef Google Scholar

    [16] B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discret. Contin. Dyn. Syst., 2014, 34(1), 269–300. doi: 10.3934/dcds.2014.34.269

    CrossRef Google Scholar

    [17] X. Wang, K. Lu and B. Wang, Long term behavior of delay parabolic equations with additive noise and deterministic time dependent forcing, SIAM J. Appl. Dyn. Syst., 2015, 14(2), 1018–1047. doi: 10.1137/140991819

    CrossRef Google Scholar

    [18] J. Wang and Y. Wang, Pullback attractors for reaction-diffusion delay equations on unbounded domains with non-autonomous deterministic and stochastic forcing terms, J. Math. Phys., 2013. DOI: 10.1063/1.4817862.

    CrossRef Google Scholar

    [19] S. Zhou, Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise, J. Differ. Equ., 2017, 263(4), 2247–2279. doi: 10.1016/j.jde.2017.03.044

    CrossRef Google Scholar

    [20] C. Zeng, X. Lin and H. Cui, Uniform attractors for a class of stochastic evolution equations with multiplicative fractional noise, Stoch. Dyn., 2021. DOI: 10.1142/S0219493721500209.

    CrossRef Google Scholar

Article Metrics

Article views(1987) PDF downloads(440) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint