Citation: | Ting Gong, Zhe Pu, Dingshi Li. UPPER SEMICONTINUITY OF UNIFORM RANDOM ATTRACTORS FOR DELAY PARABOLIC EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 928-953. doi: 10.11948/20220239 |
This paper concentrates on the upper semicontinuity of uniform random attractors for a class of delay parabolic equations with additive noise and nonautonomous external force terms. Firstly, through the uniform estimation of the solution, it is proved that the solution of the equation has a closed uniform pullback absorbing set with respect to the symbolic space. Then, by Arzela-Ascoli theorem, we prove uniformly pullback compactness of solutions as well as the existence and uniqueness of uniform random attractors. Finally, we prove the upper semicontinuity of the uniform random attractors when time delay approaches to zero.
[1] | P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 2009, 246(2), 845–869. doi: 10.1016/j.jde.2008.05.017 |
[2] | T. Caraballo, I. D. Chueshov and P. E. Kloeden, Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain, SIAM J. Math. Anal., 2007, 38(5), 1489–1507. doi: 10.1137/050647281 |
[3] | T. Caraballo, J. Real and I. D. Chueshov, Pullback attractors for stochastic heat equations in materials with memory, Discrete Contin. Dyn. Syst. Ser. B, 2008, 9(3/4), 525–539. doi: 10.3934/dcdsb.2008.9.525 |
[4] | H. Cui, A. C. Cunha and J. A. Langa, Finite-dimensionality of tempered random uniform attractors, J. Nonlinear Sci., 2022, 32(1), 1–55. doi: 10.1007/s00332-021-09760-y |
[5] | H. Cui and J. A. Langa, Uniform attractors for non-autonomous random dynamical systems, J. Differ. Equ., 2017, 263(2), 1225–1268. doi: 10.1016/j.jde.2017.03.018 |
[6] | H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Differ. Equ., 1997, 9(2), 307–341. doi: 10.1007/BF02219225 |
[7] | H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Relat. Field, 1994, 100(3), 365–393. doi: 10.1007/BF01193705 |
[8] | F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise, Stochastics, 1996, 59(1), 21–45. |
[9] | Z. Han and S. Zhou, Random uniform attractor and random cocycle attractor for non-autonomous stochastic Fitz Hugh-Nagumo system on unbounded domains, Stochastics, 2021, 93(5), 742–763. doi: 10.1080/17442508.2020.1801683 |
[10] | P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. A-Math. Phys. Eng. Sci., 2007, 463(2077), 163–181. |
[11] | D. Li, K. Lu, B. Wang and X. Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discret. Contin. Dyn. Syst., 2018, 38(1), 187–208. doi: 10.3934/dcds.2018009 |
[12] | D. Li, K. Lu, B. Wang and X. Wang, Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains, Discret. Contin. Dyn. Syst., 2019, 39(7), 3717–3747. doi: 10.3934/dcds.2019151 |
[13] | D. Li, B. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differ. Equ., 2016, 262(2), 1575–1602. |
[14] | Z. Shen, S. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differ. Equ., 2010, 248(6), 1432–1457. doi: 10.1016/j.jde.2009.10.007 |
[15] | B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 2012, 253(5), 1544–1583. doi: 10.1016/j.jde.2012.05.015 |
[16] | B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discret. Contin. Dyn. Syst., 2014, 34(1), 269–300. doi: 10.3934/dcds.2014.34.269 |
[17] | X. Wang, K. Lu and B. Wang, Long term behavior of delay parabolic equations with additive noise and deterministic time dependent forcing, SIAM J. Appl. Dyn. Syst., 2015, 14(2), 1018–1047. doi: 10.1137/140991819 |
[18] | J. Wang and Y. Wang, Pullback attractors for reaction-diffusion delay equations on unbounded domains with non-autonomous deterministic and stochastic forcing terms, J. Math. Phys., 2013. DOI: 10.1063/1.4817862. |
[19] | S. Zhou, Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise, J. Differ. Equ., 2017, 263(4), 2247–2279. doi: 10.1016/j.jde.2017.03.044 |
[20] | C. Zeng, X. Lin and H. Cui, Uniform attractors for a class of stochastic evolution equations with multiplicative fractional noise, Stoch. Dyn., 2021. DOI: 10.1142/S0219493721500209. |