2023 Volume 13 Issue 2
Article Contents

Na Chen, Deliang Zhu. THE GREEDY RANDOMIZED EXTENDED KACZMARZ ALGORITHM FOR NOISY LINEAR SYSTEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 913-927. doi: 10.11948/20220230
Citation: Na Chen, Deliang Zhu. THE GREEDY RANDOMIZED EXTENDED KACZMARZ ALGORITHM FOR NOISY LINEAR SYSTEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 913-927. doi: 10.11948/20220230

THE GREEDY RANDOMIZED EXTENDED KACZMARZ ALGORITHM FOR NOISY LINEAR SYSTEMS

  • For solving the noisy linear systems, we propose a new greedy randomized extended Kaczmarz algorithm by introducing an effective greedy criterion for selecting the working rows and a randomized orthogonal projection for reducing the influence of the noisy term. We prove that the solution of the proposed greedy randomized extended Kaczmarz algorithm converges in expectation to the least squares solution of the given linear system. Theoretical analysis indicate that the convergence rate of the greedy randomized extended Kaczmarz algorithm is much faster than the randomized extended Kaczmarz method, and numerical results also show that the proposed greedy randomized extended Kaczmarz algorithm is superior to the randomized extended Kaczmarz method. Moreover, for noisy linear systems, the proposed algorithm is more effcient than the greedy randomized Kaczmarz algorithm.

    MSC: 49N45, 68W20
  • 加载中
  • [1] Z. Bai and W. Wu, On greedy randomized Kaczmarz method for solving large sparse linear systems, SIAM J. Sci. Comput., 2018, 40(1), 592-606. doi: 10.1137/17M1137747

    CrossRef Google Scholar

    [2] Z. Bai and W. Wu, On convergence rate of the randomized Kaczmarz method, Linear Algebra Appl., 2018, 553, 252-269. doi: 10.1016/j.laa.2018.05.009

    CrossRef Google Scholar

    [3] Z. Bai and W. Wu, On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems, Appl. Math. Lett., 2018, 83, 21-26. doi: 10.1016/j.aml.2018.03.008

    CrossRef Google Scholar

    [4] S. Kaczmarz, Angenäherte Auflösung von systemen linearer Gleichungen, Bull. Int. Acad. Pol. Sci. Lett. A, 1937, 35, 355-357.

    Google Scholar

    [5] D. A. Lorenz, S. Wenger, F. Schöofer and M. Magnor, A sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing, IEEE International Conference on Image Processing (ICIP), Paris, France, 2014, 1347-1351.

    Google Scholar

    [6] J. Lin and D. Zhou, Learning theory of randomized Kaczmarz method, J. Machine Learning Res., 2015, 16(103), 3341-3365.

    Google Scholar

    [7] Y. Lei and D. Zhou, Learning theory of randomized sparse Kaczmarz method, SIAM J. Imaging Sci., 2018, 11(1), 547-574. doi: 10.1137/17M1136225

    CrossRef Google Scholar

    [8] A. Ma, D. Needell and A. Ramdas, Convergence properties of the randomized extended Gauss-Seidel and Kaczmarz methods, SIAM J. Matrix Anal. Appl., 2015, 36(4), 1590-1604. doi: 10.1137/15M1014425

    CrossRef Google Scholar

    [9] D. Needell, N. Srebro and R. Ward, Stochastic gradient descent, weighted sampling, and the randomized Kaczmarz algorithm, Math. Program., Ser. A, 2016, 155(1), 549-573.

    Google Scholar

    [10] D. Needell, Randomized Kaczmarz solver for noisy linear systems, BIT Numerical Mathematics, 2010, 50(2), 395-403. doi: 10.1007/s10543-010-0265-5

    CrossRef Google Scholar

    [11] C. Popa and R. Zdunek, Kaczmarz extended algorithm for tomographic image reconstruction from limited data, Math. Comput. Simulation, 2004, 65(6), 579-598. doi: 10.1016/j.matcom.2004.01.021

    CrossRef Google Scholar

    [12] E. Rebrova and D. Needell, On block Gaussian sketching for the Kaczmarz method, Numer. Algorithms, 2021, 86(1), 443-473.

    Google Scholar

    [13] F. Schöofer and D. A. Lorenz, Linear convergence of the randomized sparse Kaczmarz method, Math. Program., Ser. A, 2019, 173(1-2), 509-536.

    Google Scholar

    [14] T. Strohmer and R. Vershynin, A randomized Kaczmarz algorithm with exponential convergence, J. Fourier Anal. Appl., 2009, 15(2), 262-278.

    Google Scholar

    [15] O. Wang, W. Li, W. Bao and X. Gao, Nonlinear Kaczmarz algorithms and their convergence, J. Comput. Appl. Math., 2022, 399, 223720.

    Google Scholar

    [16] A. Zouzias and N. M. Freris, Randomized extended Kaczmarz for solving least squares, SIAM J. Matrix Anal. Appl., 2013, 34(2), 773-793.

    Google Scholar

    [17] J. Zhang, A new greedy Kaczmarz algorithm for the solution of very large linear systems, Appl. Math. Lett., 2019, 91, 207-212.

    Google Scholar

Figures(3)  /  Tables(7)

Article Metrics

Article views(2273) PDF downloads(736) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint