2023 Volume 13 Issue 2
Article Contents

Ahmed Z. Amin, António M. Lopes, Ishak Hashim. A SPACE-TIME SPECTRAL COLLOCATION METHOD FOR SOLVING THE VARIABLE-ORDER FRACTIONAL FOKKER-PLANCK EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 969-985. doi: 10.11948/20220254
Citation: Ahmed Z. Amin, António M. Lopes, Ishak Hashim. A SPACE-TIME SPECTRAL COLLOCATION METHOD FOR SOLVING THE VARIABLE-ORDER FRACTIONAL FOKKER-PLANCK EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 969-985. doi: 10.11948/20220254

A SPACE-TIME SPECTRAL COLLOCATION METHOD FOR SOLVING THE VARIABLE-ORDER FRACTIONAL FOKKER-PLANCK EQUATION

  • A numerical approach for solving the variable-order fractional Fokker-Planck equation (VO-FFPE) is proposed. The computational scheme is based on the shifted Legendre Gauss-Lobatto and the shifted Chebyshev Gauss-Radau collocation methods. The VO-FFPE is written as a truncated series of shifted Legendre and shifted Chebyshev polynomials for space and time variables, respectively. The residuals of the VO-FFPE at the shifted Legendre Gauss-Lobatto and shifted Chebyshev Gauss-Radau quadrature points are estimated. The original problem is converted into a system of algebraic equations that can be solved easily. Several examples are presented to demonstrate the efficacy of the technique.

    MSC: 65Mxx, 44Axx, 35Qxx
  • 加载中
  • [1] M. Abdelkawy, A. Amin and A. M. Lopes, Fractional-order shifted Legendre collocation method for solving non-linear variable-order fractional Fredholm integro-differential equations, Computational and Applied Mathematics, 2022, 41(1), 1–21. doi: 10.1007/s40314-021-01695-0

    CrossRef Google Scholar

    [2] H. Abo-Gabal, M. A. Zaky, A. S. Hendy and E. H. Doha, Computational aspects of fractional romanovski–bessel functions, Computational and Applied Mathematics, 2021, 40(4), 1–16.

    Google Scholar

    [3] I. G. Ameen, M. A. Zaky and E. H. Doha, Singularity preserving spectral collocation method for nonlinear systems of fractional differential equations with the right-sided Caputo fractional derivative, Journal of Computational and Applied Mathematics, 2021, 392, 113468. doi: 10.1016/j.cam.2021.113468

    CrossRef Google Scholar

    [4] A. H. Bhrawy and M. A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dynamics, 2015, 80(1), 101–116.

    Google Scholar

    [5] A. H. Bhrawy and M. A. Zaky, Numerical algorithm for the variable-order Caputo fractional functional differential equation, Nonlinear Dynamics, 2016, 85(3), 1815–1823. doi: 10.1007/s11071-016-2797-y

    CrossRef Google Scholar

    [6] A. H. Bhrawy and M. A. Zaky, Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations, Computers & Mathematics with Applications, 2017, 73(6), 1100–1117.

    Google Scholar

    [7] A. H. Bhrawy and M. A. Zaky, An improved collocation method for multi-dimensional space–time variable-order fractional Schrödinger equations, Applied Numerical Mathematics, 2017, 111, 197–218. doi: 10.1016/j.apnum.2016.09.009

    CrossRef Google Scholar

    [8] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer Science & Business Media, 2007.

    Google Scholar

    [9] L. Chen, W. Pan, R. Wu, et al., Design and implementation of grid multi-scroll fractional-order chaotic attractors, Chaos: An Interdisciplinary Journal of Nonlinear Science, 2016, 26(8), 084303. doi: 10.1063/1.4958717

    CrossRef Google Scholar

    [10] Y. Chen, L. Liu, B. Li and Y. Sun, Numerical solution for the variable order linear cable equation with Bernstein polynomials, Applied Mathematics and Computation, 2014, 238, 329–341. doi: 10.1016/j.amc.2014.03.066

    CrossRef Google Scholar

    [11] Y. Chen and J. Zhou, Error estimates of spectral Legendre–Galerkin methods for the fourth-order equation in one dimension, Applied Mathematics and Computation, 2015, 268, 1217–1226. doi: 10.1016/j.amc.2015.06.082

    CrossRef Google Scholar

    [12] G. L. Delzanno, Multi-dimensional, fully-implicit, spectral method for the Vlasov–Maxwell equations with exact conservation laws in discrete form, Journal of Computational Physics, 2015, 301, 338–356. doi: 10.1016/j.jcp.2015.07.028

    CrossRef Google Scholar

    [13] K. Diethelm, V. Kiryakova, Y. Luchko, et al., Trends, directions for further research, and some open problems of fractional calculus, Nonlinear Dynamics, 2022, 1–26.

    Google Scholar

    [14] E. Doha, M. Abdelkawy, A. Amin and D. Baleanu, Approximate solutions for solving nonlinear variable-order fractional Riccati differential equations, Nonlinear Analysis: Modelling and Control, 2019, 24(2).

    Google Scholar

    [15] E. Doha, M. Abdelkawy, A. Amin and A. M. Lopes, A space–time spectral approximation for solving nonlinear variable-order fractional sine and Klein–Gordon differential equations, Computational and Applied Mathematics, 2018, 37(5), 6212–6229. doi: 10.1007/s40314-018-0695-2

    CrossRef Google Scholar

    [16] E. H. Doha, M. A. Abdelkawy, A. Z. Amin and A. M. Lopes, Numerical solutions for variable-order fractional Gross–Pitaevskii equation with two spectral collocation approaches, International Journal of Nonlinear Sciences and Numerical Simulation, 2021.

    Google Scholar

    [17] E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin and D. Baleanu, Spectral technique for solving variable-order fractional volterra integro-differential equations, Numerical Methods for Partial Differential Equations, 2018, 34(5), 1659–1677. doi: 10.1002/num.22233

    CrossRef Google Scholar

    [18] E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin and A. M. Lopes, On spectral methods for solving variable-order fractional integro-differential equations, Computational and Applied Mathematics, 2018, 37(3), 3937–3950. doi: 10.1007/s40314-017-0551-9

    CrossRef Google Scholar

    [19] E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin and A. M. Lopes, Shifted Jacobi–Gauss-collocation with convergence analysis for fractional integro-differential equations, Communications in Nonlinear Science and Numerical Simulation, 2019, 72, 342–359. doi: 10.1016/j.cnsns.2019.01.005

    CrossRef Google Scholar

    [20] N. A. Elkot, M. A. Zaky, E. H. Doha and I. G. Ameen, On the rate of convergence of the Legendre spectral collocation method for multi-dimensional nonlinear Volterra–Fredholm integral equations, Communications in Theoretical Physics, 2021, 73(2), 025002. doi: 10.1088/1572-9494/abcfb3

    CrossRef Google Scholar

    [21] H. Habenom and D. L. Suthar, Numerical solution for the time-fractional Fokker-Planck equation via shifted Chebyshev polynomials of the fourth kind, Advances in Difference Equations, 2020, 2020(1), 1–16. doi: 10.1186/s13662-019-2438-0

    CrossRef Google Scholar

    [22] R. M. Hafez, S. S. Ezz-Eldien, A. H. Bhrawy, et al., A Jacobi Gauss–Lobatto and Gauss–Radau collocation algorithm for solving fractional Fokker-Planck equations, Nonlinear Dynamics, 2015, 82(3), 1431–1440. doi: 10.1007/s11071-015-2250-7

    CrossRef Google Scholar

    [23] A. S. Hendy, M. A. Zaky, R. M. Hafez and R. H. De Staelen, The impact of memory effect on space fractional strong quantum couplers with tunable decay behavior and its numerical simulation, Scientific Reports, 2021, 11(1), 1–15. doi: 10.1038/s41598-020-79139-8

    CrossRef Google Scholar

    [24] C. Li and A. Chen, Numerical methods for fractional partial differential equations, International Journal of Computer Mathematics, 2018, 95(6-7), 1048–1099. doi: 10.1080/00207160.2017.1343941

    CrossRef Google Scholar

    [25] L. Pinto and E. Sousa, Numerical solution of a time-space fractional Fokker-Planck equation with variable force field and diffusion, Communications in Nonlinear Science and Numerical Simulation, 2017, 50, 211–228. doi: 10.1016/j.cnsns.2017.03.004

    CrossRef Google Scholar

    [26] H. Risken, Fokker-Planck equation, in The Fokker-Planck Equation, Springer, 1996, 63–95.

    Google Scholar

    [27] F. Song and C. Xu, Spectral direction splitting methods for two-dimensional space fractional diffusion equations, Journal of Computational Physics, 2015, 299, 196–214. doi: 10.1016/j.jcp.2015.07.011

    CrossRef Google Scholar

    [28] H. Sun, W. Chen, H. Wei and Y. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, The european physical journal special topics, 2011, 193(1), 185–192. doi: 10.1140/epjst/e2011-01390-6

    CrossRef Google Scholar

    [29] V. E. Tarasov, Fractional fokker–planck equation for fractal media, Chaos: An Interdisciplinary Journal of Nonlinear Science, 2005, 15(2), 023102. doi: 10.1063/1.1886325

    CrossRef Google Scholar

    [30] V. E. Tarasov, Fokker–planck equation for fractional systems, International Journal of Modern Physics B, 2007, 21(06), 955–967. doi: 10.1142/S0217979207036771

    CrossRef Google Scholar

    [31] V. E. Tarasov, Fokker-planck equation for fractal distributions of probability, in Fractional Dynamics, Springer, 2010, 123–133.

    Google Scholar

    [32] V. E. Tarasov, Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media, Springer Science & Business Media, 2011.

    Google Scholar

    [33] V. E. Tarasov, Large lattice fractional fokker–planck equation, Journal of Statistical Mechanics: Theory and Experiment, 2014, 2014(9), P09036. doi: 10.1088/1742-5468/2014/09/P09036

    CrossRef Google Scholar

    [34] V. E. Tarasov, Generalized memory: Fractional calculus approach, Fractal and Fractional, 2018, 2(4), 23. doi: 10.3390/fractalfract2040023

    CrossRef Google Scholar

    [35] V. E. Tarasov, Applications in Physics, Part B, De Gruyter, 2019.

    Google Scholar

    [36] V. E. Tarasov, Fractional econophysics: Market price dynamics with memory effects, Physica A: Statistical Mechanics and its Applications, 2020, 557, 124865. doi: 10.1016/j.physa.2020.124865

    CrossRef Google Scholar

    [37] V. E. Tarasov and V. V. Tarasova, Economic dynamics with memory: Fractional calculus approach, 8, Walter de Gruyter GmbH & Co KG, 2021.

    Google Scholar

    [38] V. E. Tarasov and G. M. Zaslavsky, Fokker–planck equation with fractional coordinate derivatives, Physica A: Statistical Mechanics and Its Applications, 2008, 387(26), 6505–6512. doi: 10.1016/j.physa.2008.08.033

    CrossRef Google Scholar

    [39] D. Tavares, R. Almeida and D. F. M. Torres, Caputo derivatives of fractional variable order: numerical approximations, Communications in Nonlinear Science and Numerical Simulation, 2016, 35, 69–87. doi: 10.1016/j.cnsns.2015.10.027

    CrossRef Google Scholar

    [40] J. P. Ugarte, C. Tobón, A. Mendes Lopes and J. A. Tenreiro Machado, Atrial rotor dynamics under complex fractional order diffusion, Frontiers in physiology, 2018, 9, 975. doi: 10.3389/fphys.2018.00975

    CrossRef Google Scholar

    [41] J. Xie, Z. Yao, H. Gui, et al., A two-dimensional Chebyshev waveletsapproach for solving the Fokker-Planck equations of time and space fractional derivatives type with variable coefficients, Applied Mathematics and Computation, 2018, 332, 197–208. doi: 10.1016/j.amc.2018.03.040

    CrossRef Google Scholar

    [42] M. A. Zaky, An accurate spectral collocation method for nonlinear systems of fractional differential equations and related integral equations with nonsmooth solutions, Applied Numerical Mathematics, 2020, 154, 205–222. doi: 10.1016/j.apnum.2020.04.002

    CrossRef Google Scholar

    [43] M. A. Zaky, A. S. Hendy and R. H. De Staelen, Alikhanov Legendre—Galerkin spectral method for the coupled nonlinear time-space fractional Ginzburg–Landau complex system, Mathematics, 2021, 9(2), 183. doi: 10.3390/math9020183

    CrossRef Google Scholar

    [44] M. A. Zaky, A. S. Hendy and D. Suragan, Logarithmic Jacobi collocation method for Caputo–Hadamard fractional differential equations, Applied Numerical Mathematics, 2022, 181(1), 326–346.

    Google Scholar

    [45] Z. Zhao and C. Li, A numerical approach to the generalized nonlinear fractional Fokker-Planck equation, Computers & Mathematics with Applications, 2012, 64(10), 3075–3089.

    Google Scholar

Figures(10)  /  Tables(6)

Article Metrics

Article views(2300) PDF downloads(588) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint