2023 Volume 13 Issue 2
Article Contents

Saijie Chen, Xiaoli Li, Lanping Zhu, Qianglian Huang. SOLUTIONS OF THE YANG-BAXTER-LIKE MATRIX EQUATION FOR THE MATRIX WITH NONSINGULAR JORDAN BLOCKS[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 986-999. doi: 10.11948/20220267
Citation: Saijie Chen, Xiaoli Li, Lanping Zhu, Qianglian Huang. SOLUTIONS OF THE YANG-BAXTER-LIKE MATRIX EQUATION FOR THE MATRIX WITH NONSINGULAR JORDAN BLOCKS[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 986-999. doi: 10.11948/20220267

SOLUTIONS OF THE YANG-BAXTER-LIKE MATRIX EQUATION FOR THE MATRIX WITH NONSINGULAR JORDAN BLOCKS

  • Corresponding author: Email: huangql@yzu.edu.cn (Q. Huang)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11771378) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX21-3189)
  • Let $ A $ be a nonsingular matrix with only one Jordan block, we prove that the Yang-Baxter-like matrix equation $ AXA=XAX $ has no nonzero singular solution. When $ A $ is a nonsingular matrix with at least two Jordan blocks, the ranks of all nonzero singular solutions are obtained. This provides a necessary condition for a matrix to be a solution of the Yang-Baxter-like matrix equation. As applications, we obtain a family of nontrivial solutions for the nonsingular Jordan block with $ 3\times 3 $, and further investigate the non-commuting solutions for the nonsingular matrix with $ n\times n. $

    MSC: 15A24, 15A09
  • 加载中
  • [1] M. S. Adam, J. Ding, Q. Huang and L. Zhu, Solving a class of quadratic matrix equations, Appl. Math. Lett., 2018, 82, 58–63. doi: 10.1016/j.aml.2018.02.017

    CrossRef Google Scholar

    [2] M. S. Adam, J. Ding and Q. Huang, Explicit solutions of the Yang-Baxter-like matrix equation for an idempotent matrix, Appl. Math. Lett., 2017, 63, 71–76. doi: 10.1016/j.aml.2016.07.021

    CrossRef Google Scholar

    [3] M. S. Adam, J. Ding, Q. Huang and L. Zhu, All solutions of the Yang-Baxter-like matrix equationn with $A^{3}=A$, Journal of Applied Analysis and Computation, 2019, 9(3), 1022–1031.

    $A^{3}=A$" target="_blank">Google Scholar

    [4] R. J. Baxter, Partition function of the eight-vertex lattice model, Ann. Phys., 1972, 70(1), 193–228. doi: 10.1016/0003-4916(72)90335-1

    CrossRef Google Scholar

    [5] J. Ding and N. Rhee, A nontrivial solution to a stochastic matrix equation, East Asian J. Applied Math., 2012, 2(4), 277–284. doi: 10.4208/eajam.150512.231012a

    CrossRef Google Scholar

    [6] J. Ding and N. Rhee, Spectral solutions of the Yang-Baxter matrix equation, J. Math. Anal. Appl., 2013, 402, 567–573. doi: 10.1016/j.jmaa.2013.01.054

    CrossRef Google Scholar

    [7] J. Ding, C. Zhang and N. Rhee, Commuting solutions of the Yang-Baxter matrix equation, Appl. Math. Lett., 2015, 44, 1–4. doi: 10.1016/j.aml.2014.11.017

    CrossRef Google Scholar

    [8] Q. Dong and J. Ding, Complete commuting solutions of the Yang-Baxter matrix equation for diagonalizable matrices, Comput. Math. Appl., 2016, 72, 194–201. doi: 10.1016/j.camwa.2016.04.047

    CrossRef Google Scholar

    [9] Q. Dong and J. Ding, All projection-based commuting solutions of the Yang-Baxter-like matrix equation, Filomat, 2021, 35(10), 3203–3217. doi: 10.2298/FIL2110203D

    CrossRef Google Scholar

    [10] F. Felix, Nonlinear Equations, Quantum Froups and Duality Theorems: A Primer on the Yang-Baxter Equation, VDM Verlag, 2009.

    Google Scholar

    [11] Q. Huang, M. S. Adam, J. Ding and L. Zhu, All non-commuting solutions of the Yang-Baxter matrix equation for a class of diagonalizable matrices, Oper Matrices., 2019, 13(1), 187–195.

    Google Scholar

    [12] H. Ren, X. Wang and T. Wang, Commuting solutions of the Yang-Baxter-like matrix equation for a class of rank-two updated matrices, Comput. Math. Appl., 2018, 76(5), 1085–1098. doi: 10.1016/j.camwa.2018.05.042

    CrossRef Google Scholar

    [13] D. Shen and M. Wei, all solutions of the Yang-Baxter-like matrix equation for diagonalizable coefficient matrix with two different eigenvalues, Appl. Math. Lett., 2020. DOI: 10.1016/j.aml.2019.106048.

    CrossRef Google Scholar

    [14] G. Wang, Y. Wei and S. Qiao, Generalized Inverses: Theory and Computation, Springer, Singapore, 2018.

    Google Scholar

    [15] C. Yang, Some exact results for the many-body problem in one dimension with repulsive detlta-function interaction, Phys. Rev. Lett., 1967, 19(23), 1312–1315. doi: 10.1103/PhysRevLett.19.1312

    CrossRef Google Scholar

    [16] D. Zhou, G. Chen and J. Ding, Solving the Yang-Baxter-like matrix equation for rank-two matrices, Jounal of Computational and Applied Mathematics, 2017, 313, 142–151. doi: 10.1016/j.cam.2016.09.007

    CrossRef Google Scholar

    [17] D. Zhou, X. Ye, Q. Wang, J. Ding and W. Hu, Explicit solutions of the Yang-Baxter-like matrix equation for a singular diagonalizable matrix with three distinct eigenvalues, Filomat, 2021, 35(12), 3971–3982. doi: 10.2298/FIL2112971Z

    CrossRef Google Scholar

Article Metrics

Article views(2367) PDF downloads(468) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint