Citation: | Xuping Zhang, Donal O'Regan. SOLVING FUZZY FRACTIONAL EVOLUTION EQUATIONS WITH DELAY AND NONLOCAL CONDITIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 1000-1013. doi: 10.11948/20220269 |
In this paper, we prove existence and uniqueness of two kinds of fuzzy mild solutions for fuzzy fractional evolution equations with delay and nonlocal conditions under Caputo $ gH $ differentiability. In particular, the strong restriction on the constants in the condition of Lipschitzian is completely removed when the nonlocal term $ g\equiv0 $. An example is provided to illustrate our results.
[1] | R. P. Agarwal, V. Lakshmikantham and J. J. Nieto, On the concept of solution for fractional differential eqautions with uncertainty, Nonlinear Anal., 2010, 72(6), 2859–2862. doi: 10.1016/j.na.2009.11.029 |
[2] | R. P. Agarwal, D. Baleanu, J. J. Nieto, D. F. M. Torres and Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 2018, 339, 3–29. doi: 10.1016/j.cam.2017.09.039 |
[3] | R. Alikhani and F. Bahrami, Global solutions of fuzzy integro-differential equations under generalized differentiability by the method of upper and lower solutions, Inf. Sci., 2015, 295, 600–608. doi: 10.1016/j.ins.2014.10.033 |
[4] | B. Bede, I. J. Rudas and A. L. Bencsik, First order linear fuzzy differential equations under generalized differentiability, Inf. Sci., 2007, 177, 1648–1662. doi: 10.1016/j.ins.2006.08.021 |
[5] | B. Bede and S. G. Gal, Generalizations of the differential of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst., 2005, 151, 581–599. doi: 10.1016/j.fss.2004.08.001 |
[6] | B. Bede, Mathematics of Fuzzy Sets and Fuzzy Logic, Spring-Verlag, Berlin, 2013. |
[7] | B. Bede and L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets Syst., 2013, 230, 119–141. doi: 10.1016/j.fss.2012.10.003 |
[8] | P. Chen, R. Wang and X. Zhang, Long-time dynamics of fractional nonclassical diffusion equations with nonlinear colored noise and delay on unbounded domains, Bull. Sci. Math., 2021, 173, 103071. doi: 10.1016/j.bulsci.2021.103071 |
[9] | P. Chen, Y. Li and X. Zhang, Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families, Discrete Contin. Dyn. Syst. Ser. B, 2021, 26(3), 1531–1547. |
[10] | P. Diamond, Brief note on the variation of constants formula for fuzzy differential equations, Fuzzy Sets Syst., 2002, 129, 65–71. doi: 10.1016/S0165-0114(01)00158-0 |
[11] | K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Spring-Verlag, Berlin, 2000. |
[12] | J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, Oxford, 1985. |
[13] | L. T. Gomes and L. C. Barros, A note on the generalized difference and the generalized differentiability, Fuzzy Sets Syst., 2015, 280, 142–145. doi: 10.1016/j.fss.2015.02.015 |
[14] | M. Guo, X. Peng and Y. Xu, Oscillation property for fuzzy delay differential equations, Fuzzy Sets Syst., 2012, 200, 25–35. doi: 10.1016/j.fss.2012.01.011 |
[15] | Z. Gong and H. Yang, Ill-posed fuzzy initial-boundary value problems based on generalized differentiability and regularization, Fuzzy Sets Syst., 2016, 295, 99–113. doi: 10.1016/j.fss.2015.04.016 |
[16] | C. G. Gal and S. G. Gal, Semigroup of operators on spaces of fuzzy-number-valued functions with applications to fuzzy differential equations, J. Fuzzy Math., 2005, 13(3), 647–682. |
[17] | A. Khastan, J. J. Nieto and R. R. Rodríguez-López, Fuzzy delay differential equations under generalized differentiability, Inf. Sci., 2014, 275, 145–167. doi: 10.1016/j.ins.2014.02.027 |
[18] | A. Khastan, J. J. Nieto and R. R. Rodríguez-López, Periodic boundary value problems for first-order linear differential equations with uncertainty under generalized differentiability, Inf. Sci., 2013, 222, 544–558. doi: 10.1016/j.ins.2012.07.057 |
[19] | R. Liu, J. Wang and D. O'Regan, On the solutions of first-order linear impulsive fuzzy differential equations, Fuzzy Sets Syst., 2020, 400, 1–33. doi: 10.1016/j.fss.2019.11.001 |
[20] | V. Lupulescu, On a class of fuzzy functional differential equations, Fuzzy Sets Syst., 2009, 160, 1547–1562. doi: 10.1016/j.fss.2008.07.005 |
[21] | V. Lakshmikantham and R. N. Mohapatra, Theory of Fuzzy Differential Equations and Inclusions, Taylor and Francis Ltd., London, 2003. |
[22] | M. Mosleh and M. Otadi, Approximate solution of fuzzy differential equations under generalized differentiability, Appl. Math. Model., 2015, 39(10–11), 3003–3015. doi: 10.1016/j.apm.2014.11.035 |
[23] | M. Mazandarani and A. V. Kamyad, Modified fractional Euler method for solving fuzzy fractional intial value problem, Commun. Nonlinear Sci. Numer. Simul., 2013, 18(1), 12–21. doi: 10.1016/j.cnsns.2012.06.008 |
[24] | J. Y. Park, S. Y. Lee and J. U. Jeong, The approximate solutions of fuzzy functional integral equations, Fuzzy Sets Syst., 2000, 110, 79–90. doi: 10.1016/S0165-0114(98)00008-6 |
[25] | Y. Shao, Q. Mou and Z. Gong, On retarded fuzzy functional differential equations and nonabsolute fuzzy integrals, Fuzzy Sets Syst., 2019, 375, 121–140. doi: 10.1016/j.fss.2019.02.005 |
[26] | Y. Shen, On the Ulam stability of first order linear fuzzy differential equations under generalized differentiability, Fuzzy Sets Syst., 2015, 280, 27–57. doi: 10.1016/j.fss.2015.01.002 |
[27] | L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal., 2009, 71(3–4), 1311–1328. doi: 10.1016/j.na.2008.12.005 |
[28] | N. T. K. Son, A fundation on semigroups of operators defined on the set of triangular fuzzy numbers and its application to fuzzy fractional evolution equations, Fuzzy Sets Syst., 2018, 347, 1–28. doi: 10.1016/j.fss.2018.02.003 |
[29] | C. Vinothkumar, A. Deiveegan, J. J. Nieto and P. Prakash, Similarity solutions of fractional parabolic boundary value problems with uncertainty, Commun. Nonlinear Sci. Numer. Simul., 2021, 102, 105926. doi: 10.1016/j.cnsns.2021.105926 |
[30] | J. Wang, W. Wei and Y. Zhou, Fractional finite time delay evolution systems and optimal controls in infinite-dimensional spaces, J. Dyn. Control Syst., 2011, 17(4), 515–535. doi: 10.1007/s10883-011-9128-x |
[31] | R. Wang, D. Chen and T. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Diff. Eqs., 2012, 252, 202–235. doi: 10.1016/j.jde.2011.08.048 |
[32] | C. Wu and Z. Gong, On Henstock integrals of interval-valued and fuzzy-number-valued functions, Fuzzy Sets Syst., 2000, 115, 377–391. doi: 10.1016/S0165-0114(98)00277-2 |
[33] | M. M. Zirkohi, Robust adaptive backstepping control of uncertain fractional-order nonlinear systems with input time delay, Math. Comput. Simul., 2022, 196, 251–272. doi: 10.1016/j.matcom.2022.01.020 |
[34] | X. Zhang, P. Chen and D. O'Regan, Continuous dependence of fuzzy mild solutions on parameters for IVP of fractional fuzzy evolution equations, Fract. Calc. Appl. Anal., 2021, 24(6), 1758–1776. doi: 10.1515/fca-2021-0076 |