2023 Volume 13 Issue 2
Article Contents

Xuping Zhang, Donal O'Regan. SOLVING FUZZY FRACTIONAL EVOLUTION EQUATIONS WITH DELAY AND NONLOCAL CONDITIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 1000-1013. doi: 10.11948/20220269
Citation: Xuping Zhang, Donal O'Regan. SOLVING FUZZY FRACTIONAL EVOLUTION EQUATIONS WITH DELAY AND NONLOCAL CONDITIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 1000-1013. doi: 10.11948/20220269

SOLVING FUZZY FRACTIONAL EVOLUTION EQUATIONS WITH DELAY AND NONLOCAL CONDITIONS

  • Corresponding author: Email: lanyu9986@126.com (X. Zhang) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 12061063), Natural Science Foundation of Gansu (20JR5RA522) and Project of NWNU-LKQN2019-13
  • In this paper, we prove existence and uniqueness of two kinds of fuzzy mild solutions for fuzzy fractional evolution equations with delay and nonlocal conditions under Caputo $ gH $ differentiability. In particular, the strong restriction on the constants in the condition of Lipschitzian is completely removed when the nonlocal term $ g\equiv0 $. An example is provided to illustrate our results.

    MSC: 26A33, 47D06
  • 加载中
  • [1] R. P. Agarwal, V. Lakshmikantham and J. J. Nieto, On the concept of solution for fractional differential eqautions with uncertainty, Nonlinear Anal., 2010, 72(6), 2859–2862. doi: 10.1016/j.na.2009.11.029

    CrossRef Google Scholar

    [2] R. P. Agarwal, D. Baleanu, J. J. Nieto, D. F. M. Torres and Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 2018, 339, 3–29. doi: 10.1016/j.cam.2017.09.039

    CrossRef Google Scholar

    [3] R. Alikhani and F. Bahrami, Global solutions of fuzzy integro-differential equations under generalized differentiability by the method of upper and lower solutions, Inf. Sci., 2015, 295, 600–608. doi: 10.1016/j.ins.2014.10.033

    CrossRef Google Scholar

    [4] B. Bede, I. J. Rudas and A. L. Bencsik, First order linear fuzzy differential equations under generalized differentiability, Inf. Sci., 2007, 177, 1648–1662. doi: 10.1016/j.ins.2006.08.021

    CrossRef Google Scholar

    [5] B. Bede and S. G. Gal, Generalizations of the differential of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst., 2005, 151, 581–599. doi: 10.1016/j.fss.2004.08.001

    CrossRef Google Scholar

    [6] B. Bede, Mathematics of Fuzzy Sets and Fuzzy Logic, Spring-Verlag, Berlin, 2013.

    Google Scholar

    [7] B. Bede and L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets Syst., 2013, 230, 119–141. doi: 10.1016/j.fss.2012.10.003

    CrossRef Google Scholar

    [8] P. Chen, R. Wang and X. Zhang, Long-time dynamics of fractional nonclassical diffusion equations with nonlinear colored noise and delay on unbounded domains, Bull. Sci. Math., 2021, 173, 103071. doi: 10.1016/j.bulsci.2021.103071

    CrossRef Google Scholar

    [9] P. Chen, Y. Li and X. Zhang, Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families, Discrete Contin. Dyn. Syst. Ser. B, 2021, 26(3), 1531–1547.

    Google Scholar

    [10] P. Diamond, Brief note on the variation of constants formula for fuzzy differential equations, Fuzzy Sets Syst., 2002, 129, 65–71. doi: 10.1016/S0165-0114(01)00158-0

    CrossRef Google Scholar

    [11] K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Spring-Verlag, Berlin, 2000.

    Google Scholar

    [12] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, Oxford, 1985.

    Google Scholar

    [13] L. T. Gomes and L. C. Barros, A note on the generalized difference and the generalized differentiability, Fuzzy Sets Syst., 2015, 280, 142–145. doi: 10.1016/j.fss.2015.02.015

    CrossRef Google Scholar

    [14] M. Guo, X. Peng and Y. Xu, Oscillation property for fuzzy delay differential equations, Fuzzy Sets Syst., 2012, 200, 25–35. doi: 10.1016/j.fss.2012.01.011

    CrossRef Google Scholar

    [15] Z. Gong and H. Yang, Ill-posed fuzzy initial-boundary value problems based on generalized differentiability and regularization, Fuzzy Sets Syst., 2016, 295, 99–113. doi: 10.1016/j.fss.2015.04.016

    CrossRef Google Scholar

    [16] C. G. Gal and S. G. Gal, Semigroup of operators on spaces of fuzzy-number-valued functions with applications to fuzzy differential equations, J. Fuzzy Math., 2005, 13(3), 647–682.

    Google Scholar

    [17] A. Khastan, J. J. Nieto and R. R. Rodríguez-López, Fuzzy delay differential equations under generalized differentiability, Inf. Sci., 2014, 275, 145–167. doi: 10.1016/j.ins.2014.02.027

    CrossRef Google Scholar

    [18] A. Khastan, J. J. Nieto and R. R. Rodríguez-López, Periodic boundary value problems for first-order linear differential equations with uncertainty under generalized differentiability, Inf. Sci., 2013, 222, 544–558. doi: 10.1016/j.ins.2012.07.057

    CrossRef Google Scholar

    [19] R. Liu, J. Wang and D. O'Regan, On the solutions of first-order linear impulsive fuzzy differential equations, Fuzzy Sets Syst., 2020, 400, 1–33. doi: 10.1016/j.fss.2019.11.001

    CrossRef Google Scholar

    [20] V. Lupulescu, On a class of fuzzy functional differential equations, Fuzzy Sets Syst., 2009, 160, 1547–1562. doi: 10.1016/j.fss.2008.07.005

    CrossRef Google Scholar

    [21] V. Lakshmikantham and R. N. Mohapatra, Theory of Fuzzy Differential Equations and Inclusions, Taylor and Francis Ltd., London, 2003.

    Google Scholar

    [22] M. Mosleh and M. Otadi, Approximate solution of fuzzy differential equations under generalized differentiability, Appl. Math. Model., 2015, 39(10–11), 3003–3015. doi: 10.1016/j.apm.2014.11.035

    CrossRef Google Scholar

    [23] M. Mazandarani and A. V. Kamyad, Modified fractional Euler method for solving fuzzy fractional intial value problem, Commun. Nonlinear Sci. Numer. Simul., 2013, 18(1), 12–21. doi: 10.1016/j.cnsns.2012.06.008

    CrossRef Google Scholar

    [24] J. Y. Park, S. Y. Lee and J. U. Jeong, The approximate solutions of fuzzy functional integral equations, Fuzzy Sets Syst., 2000, 110, 79–90. doi: 10.1016/S0165-0114(98)00008-6

    CrossRef Google Scholar

    [25] Y. Shao, Q. Mou and Z. Gong, On retarded fuzzy functional differential equations and nonabsolute fuzzy integrals, Fuzzy Sets Syst., 2019, 375, 121–140. doi: 10.1016/j.fss.2019.02.005

    CrossRef Google Scholar

    [26] Y. Shen, On the Ulam stability of first order linear fuzzy differential equations under generalized differentiability, Fuzzy Sets Syst., 2015, 280, 27–57. doi: 10.1016/j.fss.2015.01.002

    CrossRef Google Scholar

    [27] L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal., 2009, 71(3–4), 1311–1328. doi: 10.1016/j.na.2008.12.005

    CrossRef Google Scholar

    [28] N. T. K. Son, A fundation on semigroups of operators defined on the set of triangular fuzzy numbers and its application to fuzzy fractional evolution equations, Fuzzy Sets Syst., 2018, 347, 1–28. doi: 10.1016/j.fss.2018.02.003

    CrossRef Google Scholar

    [29] C. Vinothkumar, A. Deiveegan, J. J. Nieto and P. Prakash, Similarity solutions of fractional parabolic boundary value problems with uncertainty, Commun. Nonlinear Sci. Numer. Simul., 2021, 102, 105926. doi: 10.1016/j.cnsns.2021.105926

    CrossRef Google Scholar

    [30] J. Wang, W. Wei and Y. Zhou, Fractional finite time delay evolution systems and optimal controls in infinite-dimensional spaces, J. Dyn. Control Syst., 2011, 17(4), 515–535. doi: 10.1007/s10883-011-9128-x

    CrossRef Google Scholar

    [31] R. Wang, D. Chen and T. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Diff. Eqs., 2012, 252, 202–235. doi: 10.1016/j.jde.2011.08.048

    CrossRef Google Scholar

    [32] C. Wu and Z. Gong, On Henstock integrals of interval-valued and fuzzy-number-valued functions, Fuzzy Sets Syst., 2000, 115, 377–391. doi: 10.1016/S0165-0114(98)00277-2

    CrossRef Google Scholar

    [33] M. M. Zirkohi, Robust adaptive backstepping control of uncertain fractional-order nonlinear systems with input time delay, Math. Comput. Simul., 2022, 196, 251–272. doi: 10.1016/j.matcom.2022.01.020

    CrossRef Google Scholar

    [34] X. Zhang, P. Chen and D. O'Regan, Continuous dependence of fuzzy mild solutions on parameters for IVP of fractional fuzzy evolution equations, Fract. Calc. Appl. Anal., 2021, 24(6), 1758–1776. doi: 10.1515/fca-2021-0076

    CrossRef Google Scholar

Article Metrics

Article views(2122) PDF downloads(441) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint