2023 Volume 13 Issue 2
Article Contents

Thanaa Alarfaj, Lulwah Al-Essa, Fatimah Alkathiri, Mohamed Majdoub. GLOBAL EXISTENCE AND BLOW-UP FOR ONE-DIMENSIONAL WAVE EQUATION WITH WEIGHTED EXPONENTIAL NONLINEARITY[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 1014-1026. doi: 10.11948/20220305
Citation: Thanaa Alarfaj, Lulwah Al-Essa, Fatimah Alkathiri, Mohamed Majdoub. GLOBAL EXISTENCE AND BLOW-UP FOR ONE-DIMENSIONAL WAVE EQUATION WITH WEIGHTED EXPONENTIAL NONLINEARITY[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 1014-1026. doi: 10.11948/20220305

GLOBAL EXISTENCE AND BLOW-UP FOR ONE-DIMENSIONAL WAVE EQUATION WITH WEIGHTED EXPONENTIAL NONLINEARITY

  • We consider the initial value problem for a one-dimensional wave equation with weighted exponential nonlinearity. We show global existence for small amplitude initial data. We also prove that blow-up in finite time occurs if the initial data are localized and the initial velocity being on the average positive.

    MSC: 35K58, 35A01, 35B40, 46E30
  • 加载中
  • [1] T. Alarfaj, N. Aljaber, M. Alshammari and M. Majdoub, A remark on blow-up solutions for nonlinear wave equation with weighted nonlinearities, Journal of Mathematical Analysis, 2019, 10, 69–78.

    Google Scholar

    [2] F. Asakura, Existence of a global solution to a semi-linear wave equation with slowly decreasing initial data in three space dimensions, Commun. Partial Differ. Equations, 1986, 11, 1459–1487. doi: 10.1080/03605308608820470

    CrossRef Google Scholar

    [3] H. Brunner and Z. Yang, Blow-up behavior of Hammerstein-type Volterra integral equations, J. Integral Equations Appl., 2012, 24, 487–512.

    Google Scholar

    [4] V. Georgiev, H. Lindblad and C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math., 1997, 119, 1291–1319. doi: 10.1353/ajm.1997.0038

    CrossRef Google Scholar

    [5] R. T. Glassey, Finite-time blow-up for solutions of nonlinear wave equations, Math. Z., 1981, 177, 323–340. doi: 10.1007/BF01162066

    CrossRef Google Scholar

    [6] M. Hamouda, M. A. Hamza and A. Palmieri, Blow-up and lifespan estimates for a damped wave equation in the Einstein-de Sitter spacetime with nonlinearity of derivative type, NoDEA, Nonlinear Differ. Equ. Appl., 2022, 29, 15. doi: 10.1007/s00030-022-00752-9

    CrossRef Google Scholar

    [7] F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 1979, 28, 235–268. doi: 10.1007/BF01647974

    CrossRef Google Scholar

    [8] T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations, Comm. Pure Appl. Math., 1980, 33, 501–505. doi: 10.1002/cpa.3160330403

    CrossRef Google Scholar

    [9] M. Kato, H. Takamura and K. Wakasa, The lifespan of solutions of semilinear wave equations with the scale-invariant damping in one space dimension, Differ. Integral Equ., 2019, 32, 659–678.

    Google Scholar

    [10] S. Kitamura, K. Morisawa and H. Takamura, The lifespan of classical solutions of semilinear wave equations with spatial weights and compactly supported data in one space dimension, J. Differ. Equations, 2022, 307, 486–516. doi: 10.1016/j.jde.2021.10.062

    CrossRef Google Scholar

    [11] S. Kitamura, H. Takamura and K. Wakasa, The lifespan estimates of classical solutions of one dimensional semilinear wave equations with characteristic weights, arXiv: 2204.00242, 2022.

    Google Scholar

    [12] H. Kubo, A. Osaka and M. Yazici, Global Existence and Blow-up for Wave Equations with Weighted Nonlinear Terms in One Space Dimension, Interdisciplinary Information Sciences, 2013, 19, 143–148. doi: 10.4036/iis.2013.143

    CrossRef Google Scholar

    [13] H. Lindblad and C. D. Sogge, Long-time existence for small amplitude semilinear wave equations, Amer. J. Math., 1996, 118, 1047–1135. doi: 10.1353/ajm.1996.0042

    CrossRef Google Scholar

    [14] J. Schaeffer, The equation $u_tt-\Delta u=| u| . p$ for the critical value of $p$, Proc. R. Soc. Edinb., Sect. A, Math., 1985, 101, 31–44.

    $u_tt-\Delta u=| u| . p$ for the critical value of $p$" target="_blank">Google Scholar

    [15] S. Selberg, Lecture Notes Math 632, PDE.

    Google Scholar

    [16] C. D. Sogge, Lectures on nonlinear wave equations, 2nd Edition, International press, 2013.

    Google Scholar

    [17] W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 1981, 41, 110–133. doi: 10.1016/0022-1236(81)90063-X

    CrossRef Google Scholar

    [18] A. Suzuki, Global Existence and Blow-up of Solutions to Nonlinear Wave Equation in One Space Dimension (in Japanese), Master Thesis, Saitama University, 2010.

    Google Scholar

    [19] K. Wakasa, The lifespan of solutions to wave equations with weighted nonlinear terms in one space dimension, Hokkaido Math. J., 2017, 46, 257–276.

    Google Scholar

    [20] B. Yordanov and Q. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal., 2006, 231, 361–374. doi: 10.1016/j.jfa.2005.03.012

    CrossRef Google Scholar

    [21] X. Yang and Z. Zhou, Revisit to Fritz John's paper on the blow-up of nonlinear wave equations, Appl. Math. Lett., 2016, 55, 27–35. doi: 10.1016/j.aml.2015.11.012

    CrossRef Google Scholar

    [22] Z. Yang and H. Brunner, Blow-up behavior of Hammerstein-type delay Volterra integral equations, Front. Math. China, 2013, 8, 261–280. doi: 10.1007/s11464-013-0293-y

    CrossRef Google Scholar

    [23] Y. Zhou, Cauchy problem for semilinear wave equations in four space dimensions with small initial data, J. Partial Differ. Equ., 1995, 8, 135–144.

    Google Scholar

Article Metrics

Article views(1813) PDF downloads(392) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint