Citation: | Thanaa Alarfaj, Lulwah Al-Essa, Fatimah Alkathiri, Mohamed Majdoub. GLOBAL EXISTENCE AND BLOW-UP FOR ONE-DIMENSIONAL WAVE EQUATION WITH WEIGHTED EXPONENTIAL NONLINEARITY[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 1014-1026. doi: 10.11948/20220305 |
We consider the initial value problem for a one-dimensional wave equation with weighted exponential nonlinearity. We show global existence for small amplitude initial data. We also prove that blow-up in finite time occurs if the initial data are localized and the initial velocity being on the average positive.
[1] | T. Alarfaj, N. Aljaber, M. Alshammari and M. Majdoub, A remark on blow-up solutions for nonlinear wave equation with weighted nonlinearities, Journal of Mathematical Analysis, 2019, 10, 69–78. |
[2] | F. Asakura, Existence of a global solution to a semi-linear wave equation with slowly decreasing initial data in three space dimensions, Commun. Partial Differ. Equations, 1986, 11, 1459–1487. doi: 10.1080/03605308608820470 |
[3] | H. Brunner and Z. Yang, Blow-up behavior of Hammerstein-type Volterra integral equations, J. Integral Equations Appl., 2012, 24, 487–512. |
[4] | V. Georgiev, H. Lindblad and C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math., 1997, 119, 1291–1319. doi: 10.1353/ajm.1997.0038 |
[5] | R. T. Glassey, Finite-time blow-up for solutions of nonlinear wave equations, Math. Z., 1981, 177, 323–340. doi: 10.1007/BF01162066 |
[6] | M. Hamouda, M. A. Hamza and A. Palmieri, Blow-up and lifespan estimates for a damped wave equation in the Einstein-de Sitter spacetime with nonlinearity of derivative type, NoDEA, Nonlinear Differ. Equ. Appl., 2022, 29, 15. doi: 10.1007/s00030-022-00752-9 |
[7] | F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 1979, 28, 235–268. doi: 10.1007/BF01647974 |
[8] | T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations, Comm. Pure Appl. Math., 1980, 33, 501–505. doi: 10.1002/cpa.3160330403 |
[9] | M. Kato, H. Takamura and K. Wakasa, The lifespan of solutions of semilinear wave equations with the scale-invariant damping in one space dimension, Differ. Integral Equ., 2019, 32, 659–678. |
[10] | S. Kitamura, K. Morisawa and H. Takamura, The lifespan of classical solutions of semilinear wave equations with spatial weights and compactly supported data in one space dimension, J. Differ. Equations, 2022, 307, 486–516. doi: 10.1016/j.jde.2021.10.062 |
[11] | S. Kitamura, H. Takamura and K. Wakasa, The lifespan estimates of classical solutions of one dimensional semilinear wave equations with characteristic weights, arXiv: 2204.00242, 2022. |
[12] | H. Kubo, A. Osaka and M. Yazici, Global Existence and Blow-up for Wave Equations with Weighted Nonlinear Terms in One Space Dimension, Interdisciplinary Information Sciences, 2013, 19, 143–148. doi: 10.4036/iis.2013.143 |
[13] | H. Lindblad and C. D. Sogge, Long-time existence for small amplitude semilinear wave equations, Amer. J. Math., 1996, 118, 1047–1135. doi: 10.1353/ajm.1996.0042 |
[14] |
J. Schaeffer, The equation $u_tt-\Delta u=| u| . p$ for the critical value of $p$, Proc. R. Soc. Edinb., Sect. A, Math., 1985, 101, 31–44.
$u_tt-\Delta u=| u| . p$ for the critical value of |
[15] | S. Selberg, Lecture Notes Math 632, PDE. |
[16] | C. D. Sogge, Lectures on nonlinear wave equations, 2nd Edition, International press, 2013. |
[17] | W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 1981, 41, 110–133. doi: 10.1016/0022-1236(81)90063-X |
[18] | A. Suzuki, Global Existence and Blow-up of Solutions to Nonlinear Wave Equation in One Space Dimension (in Japanese), Master Thesis, Saitama University, 2010. |
[19] | K. Wakasa, The lifespan of solutions to wave equations with weighted nonlinear terms in one space dimension, Hokkaido Math. J., 2017, 46, 257–276. |
[20] | B. Yordanov and Q. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal., 2006, 231, 361–374. doi: 10.1016/j.jfa.2005.03.012 |
[21] | X. Yang and Z. Zhou, Revisit to Fritz John's paper on the blow-up of nonlinear wave equations, Appl. Math. Lett., 2016, 55, 27–35. doi: 10.1016/j.aml.2015.11.012 |
[22] | Z. Yang and H. Brunner, Blow-up behavior of Hammerstein-type delay Volterra integral equations, Front. Math. China, 2013, 8, 261–280. doi: 10.1007/s11464-013-0293-y |
[23] | Y. Zhou, Cauchy problem for semilinear wave equations in four space dimensions with small initial data, J. Partial Differ. Equ., 1995, 8, 135–144. |