2023 Volume 13 Issue 4
Article Contents

M Gholami, A Neamaty. λ-FIXED POINT THEOREM WITH KINDS OF FUNCTIONS OF MIXED MONOTONE OPERATOR[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 1852-1871. doi: 10.11948/20220262
Citation: M Gholami, A Neamaty. λ-FIXED POINT THEOREM WITH KINDS OF FUNCTIONS OF MIXED MONOTONE OPERATOR[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 1852-1871. doi: 10.11948/20220262

λ-FIXED POINT THEOREM WITH KINDS OF FUNCTIONS OF MIXED MONOTONE OPERATOR

  • Our work is related to the existence and uniqueness of positive solution to the fractional boundary value problem(BVP) with Riemann-Liouville fractional derivative. We employ the fixed point theorem of mixed monotone operator and the attributes of the Green function to consider the following:

    $ \begin{aligned}& -D_{0+}^\nu \mathfrak{u}(t)=\lambda^{-1}(\mathfrak{f}(t, \mathfrak{u}(t), \mathbf{v}(t))+\mathfrak{g}(t, \mathfrak{u}(t))+\mathbf{k}(t, \mathbf{v}(t))), 0<t<1,3 \leq \nu \leq 4, \\& \mathfrak{u}(0)=\mathfrak{u}^{\prime}(0)=\mathfrak{u}^{\prime \prime}(0)=0, \\& {\left[D_{0^{+}}^\rho \mathfrak{u}(t)\right]_{t=1}=0, \quad 1 \leq \rho \leq 2 .}\end{aligned} $

    $ \lambda $ is a positive number. $ D_{0^{+}}^{\nu} $ and $ D_{0^{+}}^{\rho} $ are the standard Riemann-Liouville fractional derivatives of degree $ \nu $ and $ \rho $, respectively. In the end, we provide an exemplar to illustrate the outcome. It should also be noted that in this paper we have assumed the variable $ \mathbf{v} $ as follows:

    $ \mathbf{v}(t)=1-\frac{\Gamma(2-\rho)}{t^{1-\rho}} D_{0^{+}}^\rho \mathfrak{u}(t). $

    MSC: 47H10, 93B28, 26A33, 34A08, 34K37
  • 加载中
  • [1] C. S. Goodrich, Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett. J. homepage, elsevier, 2010, 23(2010), 1050–1055.

    Google Scholar

    [2] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.

    Google Scholar

    [3] D. Min, L Liu and Y Wu, Uniqueness of positive solutions for the singular fractional differential equations involving integral boundary value conditions, Boundary Value Problems a Springer Open Journal, 2018. DOI: 10.1186/s13661-018-0941-y.

    CrossRef Google Scholar

    [4] I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering, Academic Press, New York, 1999.

    Google Scholar

    [5] S. Song and Y. Cui, Existence of solutions for integral boundary value problems of mixed fractional differential equations under resonance, Boun. Value Prob. a Springer Open J., 2020. DOI: 10.1186/s13661-020-01332-5.

    CrossRef Google Scholar

    [6] Y. Sang, L. He, Y. Wang, Y. Ren and Na. Shi, Existence of positive solutions for a class of fractional differential equations with the derivative term via a new fixed point theorem, Adv. Diff. Eqs. a Springer Open J., 2021. DOI: 10.1186/s13662-021-03318-8.

    CrossRef Google Scholar

    [7] H. Wang and L. Zhang, Local existence and uniqueness of increasing positive solutions for non-singular and singular beam equation with a parameter, Boun. Value Prob. a Springer Open J., 2020. DOI: 10.1186/s13661-019-01320-4.

    CrossRef Google Scholar

    [8] H. Wang, L. Zhang and X. Wang, New unique existence criteria for higher-order nonlinear singular fractional differential equations, Nonlinear Anal., 2019. DOI: 10.15388/NA.2019.1.6.

    CrossRef Google Scholar

    [9] H. Wang and L. Zhang, The solution for a class of sum operator equation and its application to fractional differential equation boundary value problems, Boun. Value Prob. a Springer Open J., 2015. DOI: 10.1186/s13661-015-0467-5.

    CrossRef Google Scholar

    [10] Z. Yue and Y. Zou, New uniqueness results for fractional differential equation with dependence on the first order derivative, Adv. Diff. Eqs. a Springer Open J., 2019. DOI: 10.1186/s13662-018-1923-1.

    CrossRef Google Scholar

    [11] B. Zhou, L. Zhang, E. Addai and N. Zhang, Multiple positive solutions for nonlinear high-order Riemann–Liouville fractional differential equations boundary value problems with p-Laplacian operator, Boun. Value Prob. a Springer Open J., 2020. DOI: 10.1186/s13661-020-01336-1.

    CrossRef Google Scholar

    [12] C. Zhai and M. Hao, Mixed monotone operator methods for the existence and uniqueness of positive solutions to Riemann-Liouville fractional differential equation boundary value problems, Boun. Value Prob. a Springer Open J., 2013, 2013(85), 1–85.

    Google Scholar

    [13] F. Zheng, New Fixed Point Theorems for Mixed Monotone Operators with Perturbation and Applications, International Journal of Theoretical and Applied Mathematics, 2017. DOI: 10.11648/j.ijtam.20170306.12.

    CrossRef Google Scholar

    [14] C. Zhai, W. Yan and C. Yang, A sum operator method for the existence and uniqueness of positive solutions to Riemann-Liouville fractional equation boundary value problems, Commun. Non. Sci Num. Simul. J. homepage, elsevier, 2013, 18(2013), 858–866.

    Google Scholar

    [15] C. Zhai, C. Yang and C. Guo, Positive solutions of operator equations on ordered Banach spaces and applications, Computer and Mathematics with Applications J. homepage, elsevier, 2008, 56(2008), 3150–3156.

    Google Scholar

Article Metrics

Article views(1896) PDF downloads(376) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint