Citation: | M Gholami, A Neamaty. λ-FIXED POINT THEOREM WITH KINDS OF FUNCTIONS OF MIXED MONOTONE OPERATOR[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 1852-1871. doi: 10.11948/20220262 |
Our work is related to the existence and uniqueness of positive solution to the fractional boundary value problem(BVP) with Riemann-Liouville fractional derivative. We employ the fixed point theorem of mixed monotone operator and the attributes of the Green function to consider the following:
$ \begin{aligned}& -D_{0+}^\nu \mathfrak{u}(t)=\lambda^{-1}(\mathfrak{f}(t, \mathfrak{u}(t), \mathbf{v}(t))+\mathfrak{g}(t, \mathfrak{u}(t))+\mathbf{k}(t, \mathbf{v}(t))), 0<t<1,3 \leq \nu \leq 4, \\& \mathfrak{u}(0)=\mathfrak{u}^{\prime}(0)=\mathfrak{u}^{\prime \prime}(0)=0, \\& {\left[D_{0^{+}}^\rho \mathfrak{u}(t)\right]_{t=1}=0, \quad 1 \leq \rho \leq 2 .}\end{aligned} $
$ \mathbf{v}(t)=1-\frac{\Gamma(2-\rho)}{t^{1-\rho}} D_{0^{+}}^\rho \mathfrak{u}(t). $
[1] | C. S. Goodrich, Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett. J. homepage, elsevier, 2010, 23(2010), 1050–1055. |
[2] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006. |
[3] | D. Min, L Liu and Y Wu, Uniqueness of positive solutions for the singular fractional differential equations involving integral boundary value conditions, Boundary Value Problems a Springer Open Journal, 2018. DOI: 10.1186/s13661-018-0941-y. |
[4] | I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering, Academic Press, New York, 1999. |
[5] | S. Song and Y. Cui, Existence of solutions for integral boundary value problems of mixed fractional differential equations under resonance, Boun. Value Prob. a Springer Open J., 2020. DOI: 10.1186/s13661-020-01332-5. |
[6] | Y. Sang, L. He, Y. Wang, Y. Ren and Na. Shi, Existence of positive solutions for a class of fractional differential equations with the derivative term via a new fixed point theorem, Adv. Diff. Eqs. a Springer Open J., 2021. DOI: 10.1186/s13662-021-03318-8. |
[7] | H. Wang and L. Zhang, Local existence and uniqueness of increasing positive solutions for non-singular and singular beam equation with a parameter, Boun. Value Prob. a Springer Open J., 2020. DOI: 10.1186/s13661-019-01320-4. |
[8] | H. Wang, L. Zhang and X. Wang, New unique existence criteria for higher-order nonlinear singular fractional differential equations, Nonlinear Anal., 2019. DOI: 10.15388/NA.2019.1.6. |
[9] | H. Wang and L. Zhang, The solution for a class of sum operator equation and its application to fractional differential equation boundary value problems, Boun. Value Prob. a Springer Open J., 2015. DOI: 10.1186/s13661-015-0467-5. |
[10] | Z. Yue and Y. Zou, New uniqueness results for fractional differential equation with dependence on the first order derivative, Adv. Diff. Eqs. a Springer Open J., 2019. DOI: 10.1186/s13662-018-1923-1. |
[11] | B. Zhou, L. Zhang, E. Addai and N. Zhang, Multiple positive solutions for nonlinear high-order Riemann–Liouville fractional differential equations boundary value problems with p-Laplacian operator, Boun. Value Prob. a Springer Open J., 2020. DOI: 10.1186/s13661-020-01336-1. |
[12] | C. Zhai and M. Hao, Mixed monotone operator methods for the existence and uniqueness of positive solutions to Riemann-Liouville fractional differential equation boundary value problems, Boun. Value Prob. a Springer Open J., 2013, 2013(85), 1–85. |
[13] | F. Zheng, New Fixed Point Theorems for Mixed Monotone Operators with Perturbation and Applications, International Journal of Theoretical and Applied Mathematics, 2017. DOI: 10.11648/j.ijtam.20170306.12. |
[14] | C. Zhai, W. Yan and C. Yang, A sum operator method for the existence and uniqueness of positive solutions to Riemann-Liouville fractional equation boundary value problems, Commun. Non. Sci Num. Simul. J. homepage, elsevier, 2013, 18(2013), 858–866. |
[15] | C. Zhai, C. Yang and C. Guo, Positive solutions of operator equations on ordered Banach spaces and applications, Computer and Mathematics with Applications J. homepage, elsevier, 2008, 56(2008), 3150–3156. |