2023 Volume 13 Issue 4
Article Contents

Jicheng Yu, Yuqiang Feng. LIE SYMMETRY, EXACT SOLUTIONS AND CONSERVATION LAWS OF SOME FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 1872-1889. doi: 10.11948/20220268
Citation: Jicheng Yu, Yuqiang Feng. LIE SYMMETRY, EXACT SOLUTIONS AND CONSERVATION LAWS OF SOME FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 1872-1889. doi: 10.11948/20220268

LIE SYMMETRY, EXACT SOLUTIONS AND CONSERVATION LAWS OF SOME FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

  • Author Bio: Email: yjicheng@126.com(J. Yu)
  • Corresponding author: Email: yqfeng6@126.com(Y. Feng)
  • Fund Project: The authors were supported by the State Key Program of National Natural Science Foundation of China (No. 72031009)
  • In this paper, Lie symmetry analysis method is applied to space-time fractional reaction-diffusion equations and diffusion-convection Boussinesq equations. The Lie symmetries for the governing equations are obtained and used to get group generators for reducing the space-time fractional partial differential equations(FPDEs) with Riemann-Liouville fractional derivative to space-time fractional ordinary differential equations(FODEs) with Erdélyi-Kober fractional derivative. Then the Laplace transformation and the power series methods are applied to derive explicit solutions for the reduced equations. Moreover, the conservation theorems and the generalization of the Noether operators are developed to acquire the conservation laws for the equations. Some figures for the obtained explicit solutions are also presented.

    MSC: 35B06, 47F05, 35K57, 26A33
  • 加载中
  • [1] J. Boussinesq, Recherches théorique sur l'écoulement des nappes d'eau infiltrées dans le sol et sur le débit des sources, J. Math. Pures Appl., 1904, 10, 5–78.

    Google Scholar

    [2] D. Baleanu, M. Inc, A. Yusuf, et al., Space-time fractional Rosenou-Haynam equation: Lie symmetry analysis, explicit solutions and conservation laws, Adv. Differ. Equ. Ny., 2018, 1, 1–14.

    Google Scholar

    [3] E. H. El Kinani and A. Ouhadan, Lie symmetry analysis of some time fractional partial differential equations, Int. J. Mod. Phys. Conf. Ser., 2015, 38, 1560075. doi: 10.1142/S2010194515600757

    CrossRef Google Scholar

    [4] R. K. Gazizov, A. A. Kasatkin and S. Y. Lukashchuk, Continuous transformation groups of fractional differential equations, Vestnik USATU, 2007, 9, 125–135.

    Google Scholar

    [5] R. K. Gazizov, A. A. Kasatkin and S. Y. Lukashchuk, Symmetry properties of fractional diffusion equations, Phys. Scr., 2009, T136, 014016. doi: 10.1088/0031-8949/2009/T136/014016

    CrossRef Google Scholar

    [6] V. A. Galaktionov and S. R. Svirshchevskii, Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Chapman and Hall/CRC, London, 2007.

    Google Scholar

    [7] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, Singapore, 2000.

    Google Scholar

    [8] M. S. Hashemi and D. Baleanu, Lie symmetry analysis of fractional differential equations, CRC Press, Boca Raton, FL, 2020.

    Google Scholar

    [9] Q. Huang and S. Shen, Lie symmetries and group classification of a class of time fractional evolution systems, J. Math. Phys., 2015, 56, 123504. doi: 10.1063/1.4937755

    CrossRef Google Scholar

    [10] M. Inc, A. Yusuf, A. I. Aliyu, et al., Lie symmetry analysis, explicit solutions and conservation laws for the space time fractional nonlinear evolution equations, Phys. A, 2018, 496, 371–383. doi: 10.1016/j.physa.2017.12.119

    CrossRef Google Scholar

    [11] N. H. Ibragimov, Nonlinear self-adjointness and conservation laws, J. Phys. A-Math. Theor., 2011, 44, 432002. doi: 10.1088/1751-8113/44/43/432002

    CrossRef Google Scholar

    [12] N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 2007, 333, 311–328. doi: 10.1016/j.jmaa.2006.10.078

    CrossRef Google Scholar

    [13] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, New York, 2006.

    Google Scholar

    [14] A. M. Nass, Symmetry analysis of space-time fractional Poisson equation with a delay, Quaest. Math., 2019, 42, 1221–1235. doi: 10.2989/16073606.2018.1513095

    CrossRef Google Scholar

    [15] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.

    Google Scholar

    [16] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach Science Publishers, Yverdon, 1993.

    Google Scholar

    [17] K. Singla and R. K. Gupta, Comment on "Lie symmetries and group classification of a class of time fractional evolution systems"[J. Math. Phys. 56, 123504 (2015)], J. Math. Phys., 2017, 58, 054101.

    Google Scholar

    [18] K. Singla and R. K. Gupta, On invariant analysis of some time fractional nonlinear systems of partial differential equations. I, J. Math. Phys., 2016, 57, 101504. doi: 10.1063/1.4964937

    CrossRef Google Scholar

    [19] K. Singla and R. K. Gupta, On invariant analysis of space-time fractional nonlinear systems of partial differential equations. Ⅱ, J. Math. Phys., 2017, 58, 051503. doi: 10.1063/1.4982804

    CrossRef Google Scholar

    [20] R. Sahadevan and P. Prakash, On Lie symmetry analysis and invariant subspace methods of coupled time fractional partial differential equations, Chaos, Solitons and Fractals, 2017, 104, 107–120. doi: 10.1016/j.chaos.2017.07.019

    CrossRef Google Scholar

    [21] M. Yourdkhany and M. Nadjafikhah, Symmetries, similarity invariant solution, conservation laws and exact solutions of the time-fractional Harmonic Oscillator equation, J. Geom. Phys., 2020, 153, 103661. doi: 10.1016/j.geomphys.2020.103661

    CrossRef Google Scholar

    [22] J. Yu, Lie symmetry analysis of time fractional Burgers equation, Korteweg-de Vries equation and generalized reaction-diffusion equation with delays, Int. J. Geom. Methods M., 2022, 19, 2250219.

    Google Scholar

    [23] J. Yu and Y. Feng, Lie symmetry analysis and exact solutions of space-time fractional cubic Schrödinger equation, Int. J. Geom. Methods M., 2022, 19, 2250077.

    Google Scholar

    [24] Z. Zhang, Symmetry determination and nonlinearization of a nonlinear time-fractional partial differential equation, Proc. R. Soc. A, 2020, 476, 20190564. doi: 10.1098/rspa.2019.0564

    CrossRef Google Scholar

    [25] Z. Zhang and G. Li, Lie symmetry analysis and exact solutions of the time-fractional biological population model, Phys. A, 2020, 540, 123134. doi: 10.1016/j.physa.2019.123134

    CrossRef Google Scholar

Figures(5)  /  Tables(2)

Article Metrics

Article views(1956) PDF downloads(631) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint