2023 Volume 13 Issue 4
Article Contents

S. Kumbinarasaiah, Mustafa Inc, Hadi Rezazadeh, J. C. Umavathi. A NOVEL TECHNIQUE FOR SOLVING (2+1) DIMENSIONAL SYSTEM OF NONLINEAR COUPLED PARTIAL DIFFERENTIAL EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 1890-1909. doi: 10.11948/20220279
Citation: S. Kumbinarasaiah, Mustafa Inc, Hadi Rezazadeh, J. C. Umavathi. A NOVEL TECHNIQUE FOR SOLVING (2+1) DIMENSIONAL SYSTEM OF NONLINEAR COUPLED PARTIAL DIFFERENTIAL EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 1890-1909. doi: 10.11948/20220279

A NOVEL TECHNIQUE FOR SOLVING (2+1) DIMENSIONAL SYSTEM OF NONLINEAR COUPLED PARTIAL DIFFERENTIAL EQUATION

  • We present a highly efficient method to find numerical solutions to the system of PDEs. The method unifies the methods of collocation and Laguerre wavelet series (LWS). The system of (2+1)-dimensional PDEs is reduced to a set of equations having Laguerre wavelet coefficients (LWC). Computational examples are provided to validate the efficiency of the technique and we discussed the comparison between the present method and other methods solution with the exact solution. Computational results indicate that the present method is better than the other methods in the literature.

    MSC: 65T60, 41A65, 35G50
  • 加载中
  • [1] S. Arbabi, A. Nazari, M. T. Darvishi, A two dimensional Haar wavelets method for solving systems of PDEs, Applied Mathematics and Computation, 2017, 292, 33–46. doi: 10.1016/j.amc.2016.07.032

    CrossRef Google Scholar

    [2] S. Arbabi, A. Nazari, M.T. Darvishi, A semi-analytical solution of foam drainage equation by Haar wavelets method, Optik, 2016, 127, 5443–5447. doi: 10.1016/j.ijleo.2016.03.032

    CrossRef Google Scholar

    [3] A. Al-Qudah, Z. Odibat, N. Shawagfeh, A linearization-based computational algorithm of homotopy analysis method for nonlinear reaction–diffusion systems, Math. Comp. Sim., 2022, 194, 505–522. doi: 10.1016/j.matcom.2021.11.027

    CrossRef Google Scholar

    [4] J. Biazar, M. Eslami, A new homotopy perturbation method for solving systems of partial differential equations, Comput. Math. Appl, 2011, 62, 225–234.

    Google Scholar

    [5] J. Biazar, M. Eslami, A new Homotopy perturbation method for solving systems of partial differential equations, Computers and Mathematics with Applications, 2011, 62(1), 225–234. doi: 10.1016/j.camwa.2011.04.070

    CrossRef Google Scholar

    [6] S. Bekiros, S. Soradi-Zeid, J. Mou, A. Yousefpour, E. Zambrano-Serrano, H. Jahanshahi, Laguerre Wavelet Approach for a Two-Dimensional Time–Space Fractional Schrödinger Equation, Entropy, 2022, 24, 1105. doi: 10.3390/e24081105

    CrossRef Google Scholar

    [7] M. El-Gamel, W. Adel, M. S. El-Azab, Two Very Accurate and Efficient Methods for Solving Time-Dependent Problems, Applied Mathematics, 2018, 9(11), 1270–1280. doi: 10.4236/am.2018.911083

    CrossRef Google Scholar

    [8] M. Erfanian, H. Zeidabadi, O. Baghani, Solving an inverse problem for a time-fractional advection-diffusion equation with variable coefficients by rationalized Haar wavelet method, J Comp. Science, 2022, 64, 101869. doi: 10.1016/j.jocs.2022.101869

    CrossRef Google Scholar

    [9] S. Kumbinarasaiah, A new approach for the numerical solution for nonlinear Klein–Gordon equation, SeMA, 2020, 77, 435–456. doi: 10.1007/s40324-020-00225-y

    CrossRef Google Scholar

    [10] M. Kumar, S. Pandit, A composite numerical scheme for the numerical simulation of coupled Burgers equation, Comput. Phys. Commun., 2014, 185, 809–817. doi: 10.1016/j.cpc.2013.11.012

    CrossRef Google Scholar

    [11] T. Liu, Porosity reconstruction based on Biot elastic model of porous media by homotopy perturbation method, Chaos, Soliton and Fractals, 2022, 158, 112007. doi: 10.1016/j.chaos.2022.112007

    CrossRef Google Scholar

    [12] S. Liao, On the homotopy analysis method for nonlinear problems, Applied Mathematics and Computation, 2004, 147, 499–513. doi: 10.1016/S0096-3003(02)00790-7

    CrossRef Google Scholar

    [13] S. Liao, Comparison between the homotopy analysis method and homotopy perturbation method, Applied Mathematics and Computation, 2005, 169, 1186–1194. doi: 10.1016/j.amc.2004.10.058

    CrossRef Google Scholar

    [14] T. Liu, A wavelet multiscale-homotopy method for the parameter identification problem of partial differential equations, Computers and Mathematics with Applications, 2016, 17, 1519 -1523.

    Google Scholar

    [15] T. Liu, Reconstruction of a permeability field with the wavelet multiscale-homotopy method for a nonlinear convection-diffusion equation, Applied Mathematics and Computation, 2016, 275, 432–437. doi: 10.1016/j.amc.2015.11.095

    CrossRef Google Scholar

    [16] T. Liu, A multigrid-homotopy method for nonlinear inverse problems, Computers and Mathematics with Applications, 2020, 79, 1706–1717. doi: 10.1016/j.camwa.2019.09.023

    CrossRef Google Scholar

    [17] T. Liu, A wavelet multiscale method for the inverse problem of a nonlinear convectiondiffusion equation, Journal of Computational and Applied Mathematics, 2018, 330, 165–176. doi: 10.1016/j.cam.2017.08.016

    CrossRef Google Scholar

    [18] M. Matinfar, M. Saeidy, B. Gharahsuflu, A new homotopy analysis method for finding the exact solution of systems of partial differential equations, Selcuk J. Appl. Math., 2012, 13, 41–56.

    Google Scholar

    [19] A. Patra, S. S. Ray, Numerical simulation based on Haar wavelet operational method to solve neutron point kinetics equation involving sinusoidal and pulse reactivity, Ann. Nucl. Energy, 2014, 73, 408–412. doi: 10.1016/j.anucene.2014.07.025

    CrossRef Google Scholar

    [20] A. Patra, S. S. Ray, Two-dimensional Haar wavelet collocation method for the solution of stationary neutron transport equation in a homogeneous isotropic medium, Ann. Nucl. Energy, 2014, 70, 30–35. doi: 10.1016/j.anucene.2014.01.046

    CrossRef Google Scholar

    [21] S. S. Ray, A. K. Gupta, Comparative analysis of variational iteration method and Haar wavelet method for the numerical solutions of Burgers-Huxley and Huxley equations, J. Math. Chem., 2014, 52, 1066–1080. doi: 10.1007/s10910-014-0327-z

    CrossRef Google Scholar

    [22] S. S. Ray, A. K. Gupta, On the solution of Burgers-Huxley and Huxley equation using wavelet collocation method, Comput. Model. Eng. Sci., 2013, 91, 409–424.

    Google Scholar

    [23] S. C. Shiralashetti, S. Kumbinarasaiah, Hermite wavelets operational matrix of integration for the numerical solution of nonlinear singular initial value problems, Alexandria Engineering Journal, 2018, 57(4), 2591–2600. doi: 10.1016/j.aej.2017.07.014

    CrossRef Google Scholar

    [24] S. C. Shiralashetti, S. Kumbinarasaiah, Theoretical study on continuous polynomial wavelet bases through wavelet series collocation method for nonlinear Lane-Emden type equations, Applied Mathematics and Computation, 2017, 315, 591–602. doi: 10.1016/j.amc.2017.07.071

    CrossRef Google Scholar

    [25] S. C. Shiralashetti, S. Kumbinarasaiah, Hermite wavelets method for the numerical solution of linear and nonlinear singular initial and boundary value problems, Computational Methods for Differential Equations, 2019, 7(2), 177–198.

    Google Scholar

    [26] S. C. Shiralashetti, S. Kumbinarasaiah, Some Results on Haar Wavelets Matrix through Linear Algebra, Wavelets and Linear Algebra, 2017, 4(2), 49–59.

    Google Scholar

    [27] S. C. Shiralashetti, S. Kumbinarasaiah, Cardinal B-spline wavelet based numerical method for the solution of generalized Burgers-Huxley equation, Int. J. Appl. Comput. Math., 2018. Doi: org/10.1007/s40819-018-0505-y.

    CrossRef Google Scholar

    [28] S. C. Shiralashetti, S. Kumbinarasaiah, Laguerre Wavelets Exact Parseval Frame-based Numerical Method for the Solution of System of Differential Equations, Int. J. Appl. Comput. Math., 2020. https://doi.org/10.1007/s40819-020-00848-9. doi: 10.1007/s40819-020-00848-9

    CrossRef Google Scholar

    [29] Swati, M. Singh, K. Singh, An advancement approach of Haar wavelet method and Bratu-type equations, Appl. Numerical Math., 2021, 170, 74–82. doi: 10.1016/j.apnum.2021.07.014

    CrossRef Google Scholar

    [30] J. Shahni, R. Singh, Numerical simulation of Emden-Fowler integral equation with Green's function type kernel by Gegenbauer-wavelet, Taylor-wavelet and Laguerre-wavelet collocation methods, Mathematics and Computers in Simulation, 2022, 194, 430–444. doi: 10.1016/j.matcom.2021.12.008

    CrossRef Google Scholar

    [31] H. Tariq, H. Gunerhan, H. Rezazadeh, W. Adel, A numerical approach for the nonlinear temporal conformable fractional foam drainage equation, Asian-European Journal of Mathematics, 2020. Doi: 10.1142/S1793557121500893.

    CrossRef Google Scholar

    [32] K. Yildirim, A solution method for solving systems of nonlinear PDEs, World Appl. Sci. J., 2012, 1, 1527–1532.

    Google Scholar

Figures(10)  /  Tables(6)

Article Metrics

Article views(1545) PDF downloads(321) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint