Citation: | Yixing Liang, Zhenbin Fan, Gang Li. EXISTENCE, UNIQUENESS AND REGULARITY OF SOLUTIONS FOR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT DELAY[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 623-641. doi: 10.11948/20220263 |
Within this paper, we consider the existence and uniqueness of solutions for fractional integro-differential equations with state-dependent delay on the Lipschitz continuous function space. Our results are obtained by using the resolvent operator theory and the generalized Banach contraction mapping principle. The regularity of solutions of fractional integro-differential equations with state-dependent delay is also discussed. Finally, an example is provided as an application.
[1] | E. Alaidarous, W. Albarakati, A. Baliki and M. Benchohra, Global existence and stability for functional evolution equations with state-dependent delay, Revista De La Real Academia De Ciencias Exactas Físicas Y Naturales. serie A. matemáticas, 2017, 111(1), 15–24. doi: 10.1007/s13398-015-0271-1 |
[2] | E. Bajlekova, Fractional Evolution Equations in Banach Spaces (Ph. D. Thesis), University Press Facilities, Eindhoven University of Technology, 2001. |
[3] | J. Bélair, Population models with state-dependent delays, Lect. Notes Pure Appl. Math., 1991, 131, 156–176. |
[4] | N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 1990, 50(6), 1663–1688. doi: 10.1137/0150099 |
[5] | M. Büger and M. Martin, The escaping disaster: A problem related to state-dependent delays, Z. angew. Math. Phys., 2004, 55, 547–574. doi: 10.1007/s00033-004-0054-6 |
[6] | K. Cooke and W. Huang, On the problem of linearization for state-dependent delay differential equations, Proc. Amer. Math. Soc., 1996, 124(5), 1417–1426. doi: 10.1090/S0002-9939-96-03437-5 |
[7] | J. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Springer, New York, 1977. |
[8] | S. Djilali, Effect of herd shape in a diffusive predator-prey model with time delay, J. Appl. Anal. Comput., 2019, 9(2), 638–654. |
[9] | R. D. Driver, Existence theory for a delay-differential system, Contr. Differ. Equ., 1963, 1(3), 317–336. |
[10] | R. D. Driver, A functional-differential system of neutral type arising in a two-body problem of classical electrodynamics, International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics, 1963, 474–484. |
[11] | R. D. Driver, A two-body problem of classical electrodynamics the one-dimensional case, Ann. Physics, 1963, 21(1), 122–142. doi: 10.1016/0003-4916(63)90227-6 |
[12] | M. El-Borai and A. Debbouche, On some fractional integro-differential equations with analytic semigroups, Int. J. Contemp. Math. Sciences, 2009, 4, 1361–1371. |
[13] | K. Gopalsamy, Pursuit-evasion wave trains in prey-predator systems with diffusionally coupled delays, B. Math. Biol., 1980, 42, 871–887. doi: 10.1016/S0092-8240(80)80009-7 |
[14] | S. A. Gourley, Instability in a predator-prey system with delay and spatial averaging, IMA. J. Appl. Math., 1996, 56(2), 121–132. doi: 10.1093/imamat/56.2.121 |
[15] | E. Hernández, Existence and uniqueness of global solution for abstract second order differential equations with state-dependent delay, Math. Nachr., 2022, 295(3), 124–139. |
[16] | E. Hernández, D. Fernandes and J. Wu, Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay, J. Differential Equations, 2021, 302(25), 753–806. |
[17] | E. Hernández, L. R. Gambera and J. P. C. dos Santos, Local and global existence and uniqueness of solution and local well-posednesss for abstract fractional differential equations with state-dependent delay, Appl. Math. Optim., 2023, 87(3), 1–40. |
[18] | E. Hernández, M. Pierri, D. Fernandes and L. Lisboa, Existence and uniqueness of solution for neutral differential equations with state-dependent delay, J. Fixed Point Theory Appl., 2021, 23(4), 1–14. |
[19] | E. Hernández, M. Pierri and J. Wu, $C^{1+\alpha}$-strict solutions and wellposedness of abstract differential equations with state dependent delay, J. Differential Equations, 2016, 261(12), 6856–6882. doi: 10.1016/j.jde.2016.09.008 |
[20] | E. Hernández and J. Wu, Existence and uniqueness of $C^{1+\alpha}$-strict solutions for integro-differential equations with state-dependent delay, Differ. Integral. Equ., 2019, 32, 291–322. |
[21] | E. Hernández and J. Wu, Existence, uniqueness and qualitative properties of global solutions of abstract differential equations with state-dependent delay, P. Edinburgh Math. Soc., 2019, 62, 771–788. doi: 10.1017/S001309151800069X |
[22] | E. Hernández, J. Wu and D. Fernandes, Existence and uniqueness of solutions for abstract neutral differential equations with state-dependent delay, Appl. Math. Optim., 2020, 81, 89–111. doi: 10.1007/s00245-018-9477-x |
[23] | A. Kilbas, J. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V. North-Holland Math. Stud., 2006. |
[24] | M. Li, C. Chen and F. Li, On fractional powers of generators of fractional resolvent families, J. Funct. Anal., 2010, 259(10), 2702–2726. doi: 10.1016/j.jfa.2010.07.007 |
[25] | Y. Liu, H. Zhao and S. Kang, Existence of oscillatory solutions of fractional differential equations with distributed delays, J. Appl. Anal. Comput., 2022, 12(2), 807–813. |
[26] | Y. Lv, Y. Pei and R. Yuan, Principle of linearized stability and instability for parabolic partial differential equations with state-dependent delay, J. Differential Equations, 2019, 267(3), 1671–1704. doi: 10.1016/j.jde.2019.02.014 |
[27] | Y. Lv and R. Yuan, Global stability and wavefronts in a cooperation model with state-dependent time delay, J. Math. Anal. Appl., 2014, 415(2), 543–573. doi: 10.1016/j.jmaa.2014.01.086 |
[28] | I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. |
[29] | S. D. Poisson, Sur les équations aux différences melées, J. Ecole. Polytech., 1806, 6, 126–147. |
[30] | T. Sathiyaraj, J. Wang and P. Balasubramaniam, Controllability and optimal control for a class of time-delayed fractional stochastic integro-differential systems, Appl. Math. Opt., 2021, 84, 2527–2554. doi: 10.1007/s00245-020-09716-w |
[31] | V. E. Tarasov, Theoretical Physics Models with Integro-Differentiation of Fractional Order, Izd. Inst. Kompyuternykh Issledovanii, 2011. |
[32] | N. Valliammal and C. Ravichandran, Results on fractional neutral integro-differential systems with state-dependent delay in Banach spaces, Nonlinear Stud., 2018, 25(1), 159–171. |
[33] | R. Wang, Z. Ma and A. Miranville, Topological structure of the solution sets for a nonlinear delay evolution, Int. Math. Res. Notices, 2022, 2022(7), 4801–4889. doi: 10.1093/imrn/rnab176 |
[34] | Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 2010, 59(3), 1063–1077. doi: 10.1016/j.camwa.2009.06.026 |
[35] | S. Zhu and G. Li, Approximation of fractional resolvents and applications to time optimal control problems, J. Appl. Anal. Comput., 2020, 10(2), 649–666. |