2024 Volume 14 Issue 2
Article Contents

Yixing Liang, Zhenbin Fan, Gang Li. EXISTENCE, UNIQUENESS AND REGULARITY OF SOLUTIONS FOR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT DELAY[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 623-641. doi: 10.11948/20220263
Citation: Yixing Liang, Zhenbin Fan, Gang Li. EXISTENCE, UNIQUENESS AND REGULARITY OF SOLUTIONS FOR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT DELAY[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 623-641. doi: 10.11948/20220263

EXISTENCE, UNIQUENESS AND REGULARITY OF SOLUTIONS FOR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT DELAY

  • Within this paper, we consider the existence and uniqueness of solutions for fractional integro-differential equations with state-dependent delay on the Lipschitz continuous function space. Our results are obtained by using the resolvent operator theory and the generalized Banach contraction mapping principle. The regularity of solutions of fractional integro-differential equations with state-dependent delay is also discussed. Finally, an example is provided as an application.

    MSC: 34G20, 34K05, 45K05, 47A10
  • 加载中
  • [1] E. Alaidarous, W. Albarakati, A. Baliki and M. Benchohra, Global existence and stability for functional evolution equations with state-dependent delay, Revista De La Real Academia De Ciencias Exactas Físicas Y Naturales. serie A. matemáticas, 2017, 111(1), 15–24. doi: 10.1007/s13398-015-0271-1

    CrossRef Google Scholar

    [2] E. Bajlekova, Fractional Evolution Equations in Banach Spaces (Ph. D. Thesis), University Press Facilities, Eindhoven University of Technology, 2001.

    Google Scholar

    [3] J. Bélair, Population models with state-dependent delays, Lect. Notes Pure Appl. Math., 1991, 131, 156–176.

    Google Scholar

    [4] N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 1990, 50(6), 1663–1688. doi: 10.1137/0150099

    CrossRef Google Scholar

    [5] M. Büger and M. Martin, The escaping disaster: A problem related to state-dependent delays, Z. angew. Math. Phys., 2004, 55, 547–574. doi: 10.1007/s00033-004-0054-6

    CrossRef Google Scholar

    [6] K. Cooke and W. Huang, On the problem of linearization for state-dependent delay differential equations, Proc. Amer. Math. Soc., 1996, 124(5), 1417–1426. doi: 10.1090/S0002-9939-96-03437-5

    CrossRef Google Scholar

    [7] J. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Springer, New York, 1977.

    Google Scholar

    [8] S. Djilali, Effect of herd shape in a diffusive predator-prey model with time delay, J. Appl. Anal. Comput., 2019, 9(2), 638–654.

    Google Scholar

    [9] R. D. Driver, Existence theory for a delay-differential system, Contr. Differ. Equ., 1963, 1(3), 317–336.

    Google Scholar

    [10] R. D. Driver, A functional-differential system of neutral type arising in a two-body problem of classical electrodynamics, International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics, 1963, 474–484.

    Google Scholar

    [11] R. D. Driver, A two-body problem of classical electrodynamics the one-dimensional case, Ann. Physics, 1963, 21(1), 122–142. doi: 10.1016/0003-4916(63)90227-6

    CrossRef Google Scholar

    [12] M. El-Borai and A. Debbouche, On some fractional integro-differential equations with analytic semigroups, Int. J. Contemp. Math. Sciences, 2009, 4, 1361–1371.

    Google Scholar

    [13] K. Gopalsamy, Pursuit-evasion wave trains in prey-predator systems with diffusionally coupled delays, B. Math. Biol., 1980, 42, 871–887. doi: 10.1016/S0092-8240(80)80009-7

    CrossRef Google Scholar

    [14] S. A. Gourley, Instability in a predator-prey system with delay and spatial averaging, IMA. J. Appl. Math., 1996, 56(2), 121–132. doi: 10.1093/imamat/56.2.121

    CrossRef Google Scholar

    [15] E. Hernández, Existence and uniqueness of global solution for abstract second order differential equations with state-dependent delay, Math. Nachr., 2022, 295(3), 124–139.

    Google Scholar

    [16] E. Hernández, D. Fernandes and J. Wu, Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay, J. Differential Equations, 2021, 302(25), 753–806.

    Google Scholar

    [17] E. Hernández, L. R. Gambera and J. P. C. dos Santos, Local and global existence and uniqueness of solution and local well-posednesss for abstract fractional differential equations with state-dependent delay, Appl. Math. Optim., 2023, 87(3), 1–40.

    Google Scholar

    [18] E. Hernández, M. Pierri, D. Fernandes and L. Lisboa, Existence and uniqueness of solution for neutral differential equations with state-dependent delay, J. Fixed Point Theory Appl., 2021, 23(4), 1–14.

    Google Scholar

    [19] E. Hernández, M. Pierri and J. Wu, $C^{1+\alpha}$-strict solutions and wellposedness of abstract differential equations with state dependent delay, J. Differential Equations, 2016, 261(12), 6856–6882. doi: 10.1016/j.jde.2016.09.008

    CrossRef Google Scholar

    [20] E. Hernández and J. Wu, Existence and uniqueness of $C^{1+\alpha}$-strict solutions for integro-differential equations with state-dependent delay, Differ. Integral. Equ., 2019, 32, 291–322.

    Google Scholar

    [21] E. Hernández and J. Wu, Existence, uniqueness and qualitative properties of global solutions of abstract differential equations with state-dependent delay, P. Edinburgh Math. Soc., 2019, 62, 771–788. doi: 10.1017/S001309151800069X

    CrossRef Google Scholar

    [22] E. Hernández, J. Wu and D. Fernandes, Existence and uniqueness of solutions for abstract neutral differential equations with state-dependent delay, Appl. Math. Optim., 2020, 81, 89–111. doi: 10.1007/s00245-018-9477-x

    CrossRef Google Scholar

    [23] A. Kilbas, J. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V. North-Holland Math. Stud., 2006.

    Google Scholar

    [24] M. Li, C. Chen and F. Li, On fractional powers of generators of fractional resolvent families, J. Funct. Anal., 2010, 259(10), 2702–2726. doi: 10.1016/j.jfa.2010.07.007

    CrossRef Google Scholar

    [25] Y. Liu, H. Zhao and S. Kang, Existence of oscillatory solutions of fractional differential equations with distributed delays, J. Appl. Anal. Comput., 2022, 12(2), 807–813.

    Google Scholar

    [26] Y. Lv, Y. Pei and R. Yuan, Principle of linearized stability and instability for parabolic partial differential equations with state-dependent delay, J. Differential Equations, 2019, 267(3), 1671–1704. doi: 10.1016/j.jde.2019.02.014

    CrossRef Google Scholar

    [27] Y. Lv and R. Yuan, Global stability and wavefronts in a cooperation model with state-dependent time delay, J. Math. Anal. Appl., 2014, 415(2), 543–573. doi: 10.1016/j.jmaa.2014.01.086

    CrossRef Google Scholar

    [28] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

    Google Scholar

    [29] S. D. Poisson, Sur les équations aux différences melées, J. Ecole. Polytech., 1806, 6, 126–147.

    Google Scholar

    [30] T. Sathiyaraj, J. Wang and P. Balasubramaniam, Controllability and optimal control for a class of time-delayed fractional stochastic integro-differential systems, Appl. Math. Opt., 2021, 84, 2527–2554. doi: 10.1007/s00245-020-09716-w

    CrossRef Google Scholar

    [31] V. E. Tarasov, Theoretical Physics Models with Integro-Differentiation of Fractional Order, Izd. Inst. Kompyuternykh Issledovanii, 2011.

    Google Scholar

    [32] N. Valliammal and C. Ravichandran, Results on fractional neutral integro-differential systems with state-dependent delay in Banach spaces, Nonlinear Stud., 2018, 25(1), 159–171.

    Google Scholar

    [33] R. Wang, Z. Ma and A. Miranville, Topological structure of the solution sets for a nonlinear delay evolution, Int. Math. Res. Notices, 2022, 2022(7), 4801–4889. doi: 10.1093/imrn/rnab176

    CrossRef Google Scholar

    [34] Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 2010, 59(3), 1063–1077. doi: 10.1016/j.camwa.2009.06.026

    CrossRef Google Scholar

    [35] S. Zhu and G. Li, Approximation of fractional resolvents and applications to time optimal control problems, J. Appl. Anal. Comput., 2020, 10(2), 649–666.

    Google Scholar

Article Metrics

Article views(1598) PDF downloads(572) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint