2024 Volume 14 Issue 2
Article Contents

Xiaoqing Lin, Yue Yang, Yancong Xu, Mu He. BIFURCATIONS AND HYDRA EFFECTS IN ROSENZWEIG-MACARTHUR MODEL[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 606-622. doi: 10.11948/20220241
Citation: Xiaoqing Lin, Yue Yang, Yancong Xu, Mu He. BIFURCATIONS AND HYDRA EFFECTS IN ROSENZWEIG-MACARTHUR MODEL[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 606-622. doi: 10.11948/20220241

BIFURCATIONS AND HYDRA EFFECTS IN ROSENZWEIG-MACARTHUR MODEL

  • In this paper, a Rosenzweig-MacArthur predator-prey model with intraspecific competition of predators and Holling type Ⅱ functional response with a prey refuge is investigated by using dynamical approach. We study the number of positive equilibria, the local and global dynamics including Hopf bifurcation, saddle-node bifurcation, Bautin bifurcation. We provide the coexistence of stable and unstable limit cycles. In particular, we show the hydra effect that describes the positive effect of the predator's mortality, as well as the positive effects of prey refuge and intraspecific competition among predators, on the predator's population density. Furthermore, numerical simulations demonstrate the theoretical results including the hydra effect region and trophic cascade.

    MSC: 34C05, 34C07, 34C23, 34C60
  • 加载中
  • [1] P. D. Adhikary, S. Mukherjee and B. Ghosh, Bifurcations and hydra effects in Bazykin's predator-prey model, Theore. Populat. Biol., 2021, 140, 44–53. doi: 10.1016/j.tpb.2021.05.002

    CrossRef Google Scholar

    [2] V. Anna, W. Sebastian and F. Ulrike, When very slow is too fast-collapse of a predator-prey system?, J. Theor. Biol., 2019, 479, 64–72. doi: 10.1016/j.jtbi.2019.07.008

    CrossRef Google Scholar

    [3] L. K. Boast, E. V. Chelysheva and V. V. D. Merwe, Cheetah translocation and reintroduction programs: Past, present, and future, Cheetahs: Biology and Conservation, 2018, 275–289.

    Google Scholar

    [4] D. I. Bolnick, Intraspecific competition favours niche width expansion in Drosophila melanogaster, Nature, 2012, 410(6827), 463–466.

    Google Scholar

    [5] L. Chen, F. Chen and L. Chen, Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a constant prey refuge, Nonlinear Anal., 2010, 11, 246–252. doi: 10.1016/j.nonrwa.2008.10.056

    CrossRef Google Scholar

    [6] P. Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 2002, 180, 29–48. doi: 10.1016/S0025-5564(02)00108-6

    CrossRef Google Scholar

    [7] L. Eigentler, Intraspecific competition in models for vegetation patterns: Decrease in resilience to aridity and facilitation of species coexistence, Ecol. Complex., 2020, 42, 100835. doi: 10.1016/j.ecocom.2020.100835

    CrossRef Google Scholar

    [8] S. Funk, S. Bansal, C. T. Bauch, K. T. D. Eames, W. J. Edmunds, A. P. Galvani and P. Klepac, Nine challenges in incorporating the dynamics of behaviour in infectious diseases models, Epidemics, 2015, 10, 21–25. doi: 10.1016/j.epidem.2014.09.005

    CrossRef Google Scholar

    [9] J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, 1983.

    Google Scholar

    [10] M. Haque, M. S. Rahman, E. Venturino and B. L. Li, Effect of a functional response-dependent prey refuge in a predator-prey model, Ecol. Complex., 2014, 20, 248–256. doi: 10.1016/j.ecocom.2014.04.001

    CrossRef Google Scholar

    [11] S. B. Hsu and J. P. Shi, Relaxation oscillation profile of limit cycle in predator-prey system, Discrete & Contin. Dyn. Syst. Ser. B, 2009, 11(4), 893–911.

    Google Scholar

    [12] Y. Huang, F. Chen and L. Zhong, Stability analysis of a prey-predator model with Holling type Ⅲ response function incorporating a prey refuge, Appl. Math. Comput., 2016, 182, 672–683.

    Google Scholar

    [13] T. K. Kar, Stability analysis of a prey-predator model incorporating a prey refuge, Commun. Nonlinear Sci. Numer. Simul., 2005, 10, 681–691. doi: 10.1016/j.cnsns.2003.08.006

    CrossRef Google Scholar

    [14] P. Lenka, Regime shifts caused by adaptive dynamics in prey-predator models and their relationship with intraspecific competition, Ecol. Complex., 2018, 36, 48–56. doi: 10.1016/j.ecocom.2018.06.003

    CrossRef Google Scholar

    [15] H. L. Li, L. Zhang, C. Hu, Y. L. Jiang and Z. D. Teng, Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput., 2016, 54, 435–449.

    Google Scholar

    [16] H. M. Manarul and S. Sahabuddin, Dynamics of a harvested prey-predator model with prey refuge dependent on both species, Inter. J. Bifur. & Chaos, 2018, 28(12), 1830040.

    Google Scholar

    [17] H. C. Michael and Y. Masato, How (co)evolution alters predator responses to increased mortality: Extinction thresholds and hydra effects, Ecology, 2019, 100, e02789. doi: 10.1002/ecy.2789

    CrossRef Google Scholar

    [18] H. C. Michael and A. Peter, Hydra effects in stable communities and their implications for system dynamics, Ecology, 2016, 97(5), 1135–1145. doi: 10.1890/15-0648.1

    CrossRef Google Scholar

    [19] I. S. C. Michel and A. Lucas, Multiple hydra effect in a predator-prey model with Allee effect and mutual interference in the predator, Ecol. Model., 2018, 373, 22–24. doi: 10.1016/j.ecolmodel.2018.02.005

    CrossRef Google Scholar

    [20] D. Mukherjee, Role of fear in predator-prey system with intraspecific competition, Math. Comput. Simulat., 2020, 177, 263–275. doi: 10.1016/j.matcom.2020.04.025

    CrossRef Google Scholar

    [21] C. E. Parent, D. Agashe and D. I. Bolnick, Intraspecific competition reduces niche width in experimental populations, Ecology and Evolution, 2015, 4(20), 1–13.

    Google Scholar

    [22] J. P. Park, Y. Do and B. Jang, Multistability in the cyclic competition system, Chaos, 2018, 28, 113110. doi: 10.1063/1.5045366

    CrossRef Google Scholar

    [23] S. Samanta, R. Dhar, I. M. Elmojtaba and J. Chattopadhyay, The role of additional food in a predator-prey model with a prey refuge, J. Biol. Syst., 2016, 24, 345–365. doi: 10.1142/S0218339016500182

    CrossRef Google Scholar

    [24] S. Sarwardi, S. Ray and P. K. Mandal, Analysis of a competitive prey-predator system with a prey refuge, Biosystems, 2012, 110(3), 133–148. doi: 10.1016/j.biosystems.2012.08.002

    CrossRef Google Scholar

    [25] G. Seo and D. L. DeAngelis, A predator-prey model with a Holling type Ⅰ functional response including a predator mutual interference, J. Nonlinear Sci., 2011, 21, 811–833. doi: 10.1007/s00332-011-9101-6

    CrossRef Google Scholar

    [26] M. Sieber and F. M. Hilker, The hydra effect in predator-prey models, J. Math. Biol., 2011, 64, 341–360.

    Google Scholar

    [27] C. S. B. D. Silva, K. R. Park and R. A. Blood, Intraspecific competition affects the pupation behavior of spotted-wing drosophila, Scientific Reports, 2019, 9(1), 7775. doi: 10.1038/s41598-019-44248-6

    CrossRef Google Scholar

    [28] A. Singh, H. Wang, W. Morrison and H. Weiss, Modeling fish biomass structure at near pristine coral reefs and degradation by fishing, J. Biol. Syst., 2012, 20, 21–36. doi: 10.1142/S0218339011500318

    CrossRef Google Scholar

    [29] J. P. Tripathi, S. Abbas and M. Thakur, Dynamical analysis of a prey-predator model with Beddington-DeAngelis type function response incorporating a prey refuge, Nonlinear Dyn., 2015, 80, 177–196. doi: 10.1007/s11071-014-1859-2

    CrossRef Google Scholar

    [30] H. Wang, W. Morrison, A. Singh and H. Weiss, Modeling inverted biomass pyramids and refuges in ecosystems, Ecol. Model., 2009, 220, 1376–1382. doi: 10.1016/j.ecolmodel.2009.03.005

    CrossRef Google Scholar

    [31] H. Wang and S. Thanarajah, Refuge-mediated predator-prey dynamics and biomass pyramids, Math. Biosci., 2018, 298, 29–45. doi: 10.1016/j.mbs.2017.12.007

    CrossRef Google Scholar

    [32] H. S. Zhang, Y. L. Cai, M. S. Fu and W. M. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput., 2019, 356, 328–337.

    Google Scholar

Figures(7)

Article Metrics

Article views(1980) PDF downloads(432) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint