Citation: | Honggang Jia, Yufeng Nie, Yanmin Zhao. GENERAL CONFORMABLE FRACTIONAL DOUBLE LAPLACE-SUMUDU TRANSFORM AND ITS APPLICATION[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 9-20. doi: 10.11948/20220344 |
A new deformation of the Laplace-Sumudu transform that called general fractional conformable double Laplace-Sumudu transform (FCDLST) has been introduced. Its excellent properties are proved, then, fractional partial differential equations is solved by using the proposed transform. Besides, illustrative examples are provided to demonstrate the validity and applicability of the presented method.
[1] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math, 2015, 279(C), 57–66. |
[2] | S. Ahmed and T. Elzaki, Solution of heat and wave-like equations by adomian decomposition Sumudu transform method, Brit. J. Math. Comput. Sci., 2015, 8(2), 101–111. doi: 10.9734/BJMCS/2015/9225 |
[3] | S. A. Ahmed, T. M. Elzaki, M. Elbadri and M. Z. Mohamed, Solution of partial differential equations by new double integral transform (Laplace-Sumudu transform), Ain. Shams. Eng. J., 2021, 12(4), 4045–4049. doi: 10.1016/j.asej.2021.02.032 |
[4] | S. A. Ahmed, T. M. Elzaki and A. A. Hassan, Solution of integral differential equations by new double integral transform (Laplace-Sumudu transform), Abstr. Appl. Anal., 2020, 2020(12), 1–7. |
[5] | S. A. Ahmed, A. Qazza and R. Saadeh, Exact solutions of nonlinear partial differential equations via the new double integral transform combined with iterative method, Axioms, 2022, 11(6), 247. doi: 10.3390/axioms11060247 |
[6] | S. Alfaqeih and I. Kayijuka, Solving system of conformable fractional differential equations by conformable double laplace decomposition method, J. Part. Diff. Eq., 2020, 33(3), 275–290. |
[7] | M. S. Alrawashdeh and S. Migdady, On finding exact and approximate solutions to fractional systems of ordinary differential equations using fractional natural adomian decomposition method, J. Algorithms. Comput. Technol., 2022, 16, 1–11. |
[8] | Z. Al-Zhour, F. Alrawajeh, N. Al-Mutairi and R. Alkhasawneh, New results on the conformable fractional Sumudu transform: Theories and applications, Int. J. Anal. Appl., 2019, 17(6), 1019–1033. |
[9] | S. A. Bhanotar and M. K. A. Kaabar, Analytical solutions for the nonlinear partial differential equations using the conformable triple laplace transform decomposition method, Int. J. Differ. Equ., 2021, 2021, 1–18. doi: 10.1186/s13662-020-03162-2 |
[10] | H. Eltayeb, I. Bachar and A. Kılıçman, On conformable double laplace transform and one dimensional fractional coupled Burgers' equation, Symmetry, 2019, 11(3), 417. doi: 10.3390/sym11030417 |
[11] | T. M. Elzaki, S. A. Ahmed, M. Areshi and M. Chamekh, Fractional partial differential equations and novel double integral transform, Journal of King Saud University-Science, 2022, 34(3), 101832. doi: 10.1016/j.jksus.2022.101832 |
[12] | A. E. Hamza and T. M. Elzaki, Application of Homotopy perturbation and Sumudu transform method for solving Burgers equations, American. J. Theo. Appl. Stat., 2015, 4(6), 480–483. doi: 10.11648/j.ajtas.20150406.18 |
[13] | M. S. Hashemi, Invariant subspaces admitted by fractional differential equations with conformable derivatives, Chao. Soliton. Fract., 2018, 107(C), 161–169. |
[14] | K. Hosseini, P. Mayeli and R. Ansari, Bright and singular soliton solutions of the conformable time-fractional Klein-Gordon equations with different nonlinearities, Wave. Random. Complex., 2018, 28(3), 426–434. doi: 10.1080/17455030.2017.1362133 |
[15] | R. Khalil, M. Al-Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 2014, 264(5), 65–70. |
[16] | N. A. Khan, O. A. Razzaq and M. Ayaz, Some properties and applications of conformable fractional Laplace transform(CFLT), J. Fract. Calc. Appl, 2018, 9(1), 72–81. |
[17] | S. E. A. A. Mohammed, Solution of Linear and Nonlinear Partial Differential Equations by Mixing Adomian Decomposition Method and Sumudu Transform, Ph. D. Thesis, Sudan University of Science and Technology, Kashmu, Sudan, 2016. |
[18] | V. F. Morales-Delgado, J. F. Gómez-Aguilar and M. A. Taneco-Hernández. Analytical solution of the time fractional diffusion equation and fractional convection-diffusion equation, Rev. Mex. Fís., 2019, 65(1), 82–88. |
[19] | J. Singh, D. Kumar and A. Kilicman, Application of Homotopy perturbation Sumudu transform method for solving heat and wave-like equations, Malays. J. Math. Sci., 2013, 7(1), 79–95. |
[20] | H. Thabet and S. Kendre, Analytical solutions for conformable space-time fractional partial differential equations via fractional differential transform, Chaos. Soliton. Fract., 2018, 109, 238–245. |
[21] | A. M. Wazwaz, Partial Differential Equations and Solitary Wave's Theory, Springer, New York/Dordrecht Heidelberg, 2009. |