2025 Volume 15 Issue 1
Article Contents

Honggang Jia, Yufeng Nie, Yanmin Zhao. GENERAL CONFORMABLE FRACTIONAL DOUBLE LAPLACE-SUMUDU TRANSFORM AND ITS APPLICATION[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 9-20. doi: 10.11948/20220344
Citation: Honggang Jia, Yufeng Nie, Yanmin Zhao. GENERAL CONFORMABLE FRACTIONAL DOUBLE LAPLACE-SUMUDU TRANSFORM AND ITS APPLICATION[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 9-20. doi: 10.11948/20220344

GENERAL CONFORMABLE FRACTIONAL DOUBLE LAPLACE-SUMUDU TRANSFORM AND ITS APPLICATION

  • A new deformation of the Laplace-Sumudu transform that called general fractional conformable double Laplace-Sumudu transform (FCDLST) has been introduced. Its excellent properties are proved, then, fractional partial differential equations is solved by using the proposed transform. Besides, illustrative examples are provided to demonstrate the validity and applicability of the presented method.

    MSC: 35A20, 35A22
  • 加载中
  • [1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math, 2015, 279(C), 57–66.

    Google Scholar

    [2] S. Ahmed and T. Elzaki, Solution of heat and wave-like equations by adomian decomposition Sumudu transform method, Brit. J. Math. Comput. Sci., 2015, 8(2), 101–111. doi: 10.9734/BJMCS/2015/9225

    CrossRef Google Scholar

    [3] S. A. Ahmed, T. M. Elzaki, M. Elbadri and M. Z. Mohamed, Solution of partial differential equations by new double integral transform (Laplace-Sumudu transform), Ain. Shams. Eng. J., 2021, 12(4), 4045–4049. doi: 10.1016/j.asej.2021.02.032

    CrossRef Google Scholar

    [4] S. A. Ahmed, T. M. Elzaki and A. A. Hassan, Solution of integral differential equations by new double integral transform (Laplace-Sumudu transform), Abstr. Appl. Anal., 2020, 2020(12), 1–7.

    Google Scholar

    [5] S. A. Ahmed, A. Qazza and R. Saadeh, Exact solutions of nonlinear partial differential equations via the new double integral transform combined with iterative method, Axioms, 2022, 11(6), 247. doi: 10.3390/axioms11060247

    CrossRef Google Scholar

    [6] S. Alfaqeih and I. Kayijuka, Solving system of conformable fractional differential equations by conformable double laplace decomposition method, J. Part. Diff. Eq., 2020, 33(3), 275–290.

    Google Scholar

    [7] M. S. Alrawashdeh and S. Migdady, On finding exact and approximate solutions to fractional systems of ordinary differential equations using fractional natural adomian decomposition method, J. Algorithms. Comput. Technol., 2022, 16, 1–11.

    Google Scholar

    [8] Z. Al-Zhour, F. Alrawajeh, N. Al-Mutairi and R. Alkhasawneh, New results on the conformable fractional Sumudu transform: Theories and applications, Int. J. Anal. Appl., 2019, 17(6), 1019–1033.

    Google Scholar

    [9] S. A. Bhanotar and M. K. A. Kaabar, Analytical solutions for the nonlinear partial differential equations using the conformable triple laplace transform decomposition method, Int. J. Differ. Equ., 2021, 2021, 1–18. doi: 10.1186/s13662-020-03162-2

    CrossRef Google Scholar

    [10] H. Eltayeb, I. Bachar and A. Kılıçman, On conformable double laplace transform and one dimensional fractional coupled Burgers' equation, Symmetry, 2019, 11(3), 417. doi: 10.3390/sym11030417

    CrossRef Google Scholar

    [11] T. M. Elzaki, S. A. Ahmed, M. Areshi and M. Chamekh, Fractional partial differential equations and novel double integral transform, Journal of King Saud University-Science, 2022, 34(3), 101832. doi: 10.1016/j.jksus.2022.101832

    CrossRef Google Scholar

    [12] A. E. Hamza and T. M. Elzaki, Application of Homotopy perturbation and Sumudu transform method for solving Burgers equations, American. J. Theo. Appl. Stat., 2015, 4(6), 480–483. doi: 10.11648/j.ajtas.20150406.18

    CrossRef Google Scholar

    [13] M. S. Hashemi, Invariant subspaces admitted by fractional differential equations with conformable derivatives, Chao. Soliton. Fract., 2018, 107(C), 161–169.

    Google Scholar

    [14] K. Hosseini, P. Mayeli and R. Ansari, Bright and singular soliton solutions of the conformable time-fractional Klein-Gordon equations with different nonlinearities, Wave. Random. Complex., 2018, 28(3), 426–434. doi: 10.1080/17455030.2017.1362133

    CrossRef Google Scholar

    [15] R. Khalil, M. Al-Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 2014, 264(5), 65–70.

    Google Scholar

    [16] N. A. Khan, O. A. Razzaq and M. Ayaz, Some properties and applications of conformable fractional Laplace transform(CFLT), J. Fract. Calc. Appl, 2018, 9(1), 72–81.

    Google Scholar

    [17] S. E. A. A. Mohammed, Solution of Linear and Nonlinear Partial Differential Equations by Mixing Adomian Decomposition Method and Sumudu Transform, Ph. D. Thesis, Sudan University of Science and Technology, Kashmu, Sudan, 2016.

    Google Scholar

    [18] V. F. Morales-Delgado, J. F. Gómez-Aguilar and M. A. Taneco-Hernández. Analytical solution of the time fractional diffusion equation and fractional convection-diffusion equation, Rev. Mex. Fís., 2019, 65(1), 82–88.

    Google Scholar

    [19] J. Singh, D. Kumar and A. Kilicman, Application of Homotopy perturbation Sumudu transform method for solving heat and wave-like equations, Malays. J. Math. Sci., 2013, 7(1), 79–95.

    Google Scholar

    [20] H. Thabet and S. Kendre, Analytical solutions for conformable space-time fractional partial differential equations via fractional differential transform, Chaos. Soliton. Fract., 2018, 109, 238–245.

    Google Scholar

    [21] A. M. Wazwaz, Partial Differential Equations and Solitary Wave's Theory, Springer, New York/Dordrecht Heidelberg, 2009.

    Google Scholar

Article Metrics

Article views(690) PDF downloads(338) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint