2023 Volume 13 Issue 4
Article Contents

Sobirjon Shoyimardonov. NEIMARK-SACKER BIFURCATION AND STABILITY ANALYSIS IN A DISCRETE PHYTOPLANKTON-ZOOPLANKTON SYSTEM WITH HOLLING TYPE Ⅱ FUNCTIONAL RESPONSE[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2048-2064. doi: 10.11948/20220345
Citation: Sobirjon Shoyimardonov. NEIMARK-SACKER BIFURCATION AND STABILITY ANALYSIS IN A DISCRETE PHYTOPLANKTON-ZOOPLANKTON SYSTEM WITH HOLLING TYPE Ⅱ FUNCTIONAL RESPONSE[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2048-2064. doi: 10.11948/20220345

NEIMARK-SACKER BIFURCATION AND STABILITY ANALYSIS IN A DISCRETE PHYTOPLANKTON-ZOOPLANKTON SYSTEM WITH HOLLING TYPE Ⅱ FUNCTIONAL RESPONSE

  • In this paper, we study discrete-time model of phytoplankton-zooplankton with Holling type Ⅱ predator functional response. It is shown that Neimark-Sacker bifurcation occurs at the one of positive fixed points for certain parameter chosen as a bifurcation parameter. The existence and local stability of the positive fixed points of the model are proved. By considering theoretical results in the concrete example, it was obtained interesting dynamics of this system, which is not investigated in its corresponding continuous system.

    MSC: 34C23
  • 加载中
  • [1] J. Chattopadhayay, R. R. Sarkar and S. Mandal, Toxin-producing plankton may act as a biological control for planktonic blooms-Field study and mathematical modelling, J. Theor. Biol., 2002, 215(3), 333-344. doi: 10.1006/jtbi.2001.2510

    CrossRef Google Scholar

    [2] J. Chen and H. Zhang, The qualitative analysis of two species predator-prey model with Holling type Ⅲ functional response, Appl. Math. Mech., 1986, 77(1), 77-86.

    Google Scholar

    [3] K. Cheng, Uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal., 1981, 12(4), 541-548. doi: 10.1137/0512047

    CrossRef Google Scholar

    [4] W. Cheng and L. Wang, Stability and Neimark-Sacker bifurcation of a semi-discrete population model, Journal of Applied Analysis and Computation, 2014, 4(4), 419-435. doi: 10.11948/2014024

    CrossRef Google Scholar

    [5] S. Chen, H. Yang and J. Wei, Global dynamics of two phytoplankton-zooplankton models with toxic substances effect, Journal of Applied Analysis and Computation, 2019, 9(3), 796-809. doi: 10.11948/2156-907X.20180187

    CrossRef Google Scholar

    [6] R. L. Devaney, An Introduction to Chaotic Dynamical System, Westview Press, 2003.

    Google Scholar

    [7] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.

    Google Scholar

    [8] Y. Hong, Global dynamics of a diffusive phytoplankton-zooplankton model with toxic substances effect and delay, Math. Biosci. Eng., 2022, 19(7), 6712-6730. doi: 10.3934/mbe.2022316

    CrossRef Google Scholar

    [9] S. B. Hsu, On global stability of a predator-prey system, Math. Biosci., 1978, 39(1-2), 1-10. doi: 10.1016/0025-5564(78)90025-1

    CrossRef Google Scholar

    [10] S. B. Hsu, A survey of constructing lyapunov functions for mathematical models in population biology, Taiwanese J. Math., 2005, 9(2), 151-173.

    Google Scholar

    [11] S. B. Hsu and T. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 1995, 55(3), 763-863. doi: 10.1137/S0036139993253201

    CrossRef Google Scholar

    [12] W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a prey refuge, J. Differential Equations, 2006, 231(2), 534-550. doi: 10.1016/j.jde.2006.08.001

    CrossRef Google Scholar

    [13] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd Ed., Springer-Verlag, New York, 1998.

    Google Scholar

    [14] T. Liao, The impact of plankton body size on phytoplankton-zooplankton dynamics in the absence and presence of stochastic environmental fluctuation, Chaos, Solitons Fractals, 2022. DOI: 10.1016/j.chaos.2021.111617.

    CrossRef Google Scholar

    [15] R. Peng and J. Shi, Non-existence of non-constant positive steady states of two Holling type-Ⅱ predator-prey systems: Strong interaction case, J. Differential Equations, 2009, 247(3), 866-886. doi: 10.1016/j.jde.2009.03.008

    CrossRef Google Scholar

    [16] C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd Ed., Boca Raton, London, New York, 1999.

    Google Scholar

    [17] U. A. Rozikov and S. K. Shoyimardonov, Ocean ecosystem discrete time dynamics generated by $\ell$-Volterra operators, International Journal of Biomathematics, 2019, 12(2), 1950015-1-24. doi: 10.1142/S1793524519500153

    CrossRef Google Scholar

    [18] U. A. Rozikov, S. K. Shoyimardonov and R. Varro, Planktons discrete-time dynamical systems, Nonlinear studies, 2021, 28(2), 585-600.

    Google Scholar

    [19] M. Sajib, I. Sirajul, A. B. Haider and A. Sonia, A mathematical model applied to investigate the potential impact of global warming on marine ecosystems, Appl. Math. Model., 2022, 101, 19-37. doi: 10.1016/j.apm.2021.08.026

    CrossRef Google Scholar

    [20] J. Wang, Spatiotemporal patterns of a homogeneous diffusive predator-prey system with Holling type Ⅲ functional response, J. Dyn. Diff. Equat., 2017, 29(4), 1383-1409. doi: 10.1007/s10884-016-9517-7

    CrossRef Google Scholar

    [21] S. Winggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 2003.

    Google Scholar

    [22] J. Zhou and C. Mu, Coexistence states of a Holling type-Ⅱ predator-prey system, J. Math. Anal. Appl., 2010, 369(2), 555-563. doi: 10.1016/j.jmaa.2010.04.001

    CrossRef Google Scholar

    [23] Q. Zhao, S. Liu and X. Niu, Dynamic behavior analysis of a diffusive plankton model with defensive and offensive effects, Chaos, Solitons Fractals, 2019, 129, 94-102. doi: 10.1016/j.chaos.2019.08.015

    CrossRef Google Scholar

Figures(2)

Article Metrics

Article views(1545) PDF downloads(235) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint